
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6194

SQLIA Detection and Prevention using Dynamic Parse Tree with Query

Tokenization

Manikandan1

1Manikandan, Department of MCA, ASM IMCOST, Maharashtra, India

---***---

Abstract- A survey held by OSWAP in 2013 and 2017

shows web application vulnerabilities and SQL Injection

attack remains number consecutively on top 10 Web

Application Vulnerability list. SQLIA mostly is carried out

on Dynamic Web applications as they interact with

databases for various operations. SQL Injection allows an

attacker to add malicious SQL code to a web form inputs

or in URL to obtain access or to make changes to the

database that can affect business-sensitive information,

which can lead to exposure of valuable data, for example,

usernames, passwords, etc This paper proposed a

technique to prevent SQL injection based on building a

dynamic parse tree by applying tokenization with Query

Parser and is very effective in preventing SQL Injection

Attacks.

Key Words: SQL Injection, Dynamic Parse Tree, Query

Tokenization, Burp Suite, SQLIA Classical and Modern

Attacks

1. Introduction

The main purpose of the paper is to use SQL injection
attack to carry out altering the existing database,
unauthorised access to a database, escalating the
privileges of the user, obtaining information from the
database or to breakdown a web Application.

1.1 What is SQLIA

SQL Injection Attacks refers to the deployment of
malicious code in SQL statements, via Query String or
through web page form inputs.

It is one of the most commonly followed web hacking
techniques. SQLIA occurs when attackers modify the
syntax, logic or semantics of an SQL query. The main aim
of the Attacker for using SQLIA is to access database
which he is not authorized to so. To access the database
without authorization attackers applies SQLIA in the
form of systematically correct queries.

SQL injection is a hacking method that was found over
fifteen years back is despite everything ending up being
devastatingly viable today, staying atop database
security superiority.

1.2 Outcomes of SQLIA

With SQL injections, Full remote control of the database
can be taken by penetration hacker, and some of the
consequences are: [1]

Authentication bypass: A hacker can log into
application if a loophole or vulnerability found in the
web application without providing proper credentials.

Gaining access to unauthorized data: Through SQL
injection, a hacker may access information which he isn't
qualified for. Insert a command to get access to all record
details in the database, including usernames and
passwords.

Unauthorized Data Manipulation: SQL infusion may
likewise permit an application hacker to insert, change
or erase data which he isn't allowed to. This results into
the data integrity exploitation.

Gain administrative privileges: SQL injection could
permit a hacker or an anonymous user to obtain
authoritative rights on the database or the database
server and at last, could perform activities like closing
down the database. This affects the accessibility of the
database and thus, inaccessibility of the web application.

1.3 Main Cause of SQL Injection

The main reason for any type of SQL Injection attack is
because of Web Application Weaknesses. In this part,
vulnerabilities that may exist normally in web
applications and can be misused by SQL injection attacks
will be introduced: [2]

Invalidated input: This is nearly the most widely
recognized weakness in playing out an SQLIA. There are
a few parameters in the web application which are
applied in SQL queries. If they are not validated properly,
SQL injection can be carried out easily.

Improper variable size: All variables length should be
precise in the SQL statement to avoid specific attacks to
take place like the buffer overflow.

Display of Error message: If an attacker inserts
malicious code in the web form, the database generates
some error messages which are presented in the web
browser. Normally these errors contain data about

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6195

database or content structure that helps attacker to
organize a stricter attack.

Generous privileges: For the most part in a database,
the privileges are characterized as rules to state which
database subject approaches which object and what
activity are related with the user to be permitted to
perform on the items like INSERT, UPDATE, DELETE,
SELECT, DROP. Such actions should be restricted to
certain objects. An attacker or interceptor, who bypasses
authentication gets the benefits equivalent to the
legitimate profiles when more benefits are given to the
profile, the number of accessible attack strategies
increases.

Variable Orphism: The variable which stores the
malicious data should not acknowledge any data type
since an attacker can misuse this element and store
malicious data in it.
Dynamic SQL: at the point when the program runs by
merging user input, such as name and password with
SQL query such WHERE conditions dynamic SQL is
created. It is recognizable that another query could be
made by an attacker in runtime.

Client-side only control: if there is no validation on the
server-side, the client slide Input validation can be
evaded with XSS (cross-site scripting).

Stored procedures: In this kind of assault, the attacker
is attempting to execute a stored procedure present in
the database. Most of the database comes with a
standard set of stored procedure which expands the
usefulness of the database and permits to associate with
the working framework. Subsequently, in the wake of
deciding the back-end database being used, SQLIA's can
be controlled by that particular database

2. Related Work

According to [3], SQL Injection attack arises when user’s
input contains SQL keywords so that the SQL Query is
dynamically generated which changes the SQL query
intended function. Indeed, for a wide range of SQL
injection, it’s absolutely impossible somebody can
perform injection without embeddings a single quote,
space, double dash or hash in a query. The manner in
which a user can perform injection without single quote
is the point at which the user input is of type number; for
example, the Figure 1: shows SQL injection query should
be possible without utilizing single quote in numeric
type:

The nonappearance of space between '101' and 'or' does

not allow the query to retrieve data about users, though
the space between 'or' and the '1' is compulsory else it
will result in a syntax error.

Figure 2: show the necessary to user for single quotes in
type character or else syntax error occurs:

It is necessary to use single quotes between ‘admin’ and
‘or’. The injection can also be carried out using double
dashes or hash in query which are used to comment. The
double dash is used to inject the query with comment to
avoid further queries to run and execute the queries
before the comment.

This is highlighted by Ke Wei, M. Muthuprasanna and
Suraj Kothari saying that the characters '- -' mark the
beginning of a comment in SQL, and everything after that
is ignored.

3. Types of SQLIA

For past 2 decades SQL injection remains a serious threat
to Web Application. A survey held by OSWAP in 2013 and
2017 shows web application vulnerabilities and SQL
Injection attack remains number consecutively on top 10
Web Application Vulnerability list. SQL Injection attacks
keeps on changes with advancements in web application,
based on this SQL injection is classified into two types
namely Classical and Modern types of SQLIA [4]

3.1 Classical Types of SQLIA
Here I have listed some of the Classical Types of SQL
Injection Attacks

1.Tautologies: One technique to acquire unapproved
access to information is to insert a true or false condition
into the query. In SQL, if the WHERE clause of a SELECT
or UPDATE query is combined with a true or false
condition, at that point each row in the database table is
stored for the result set. Tautology-based attacks carried
out by injecting one or more conditional code in SQL
queries so as to make the SQL query assess as a genuine

condition, for example, (1=1) or (- -). The most widely
recognized utilization of this procedure is to bypass
authentication on web applications.
Fig 3 shows the Tautology attack.

2. Piggy-backed Query: By means of a query delimiter,
this is a sort of attack that exploits a database, for
example, ";", to inject additional queries to the original
query. In this technique, the primary query is original

Figure 3: Tautology attack

Figure 2: Numeric data

Figure 1: Character data

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6196

though the subsequent queries are injected. This attack is
extremely dangerous; an attacker can utilize it to inject to
any kind of SQL queries. Below fig 4 shows the piggy
backed attack.

3. Logically Incorrect: This kind of attack exploits the
mistake messages that are returned by the database for
an incorrect SQL query. These database mistake
messages frequently contain helpful data that permit
attackers to discover the defenceless parameter in a web
application and the database design. Fig 5 shows
Logically Incorrect attack.

4. Union query: Union or Association query is a type of
SQL Injection attack where an attacker embeds malicious
queries into the original SQL query. This assault should
be possible by embeddings either a UNION query or
injecting into vulnerable parameters. The aftereffect of
this attack is that the database returns a dataset that is
the association of the consequences of the original query
with the result of the injected query. Fig 6 shows the
Union attack.

5.Stored Procedure: In this attack, attacker concentrates
on stored procedure which is available in the database
framework. Most of the database comes with a standard
set of stored procedure which expands the usefulness of
the database and permits to associate with the working
framework. Stored procedures run legitimately by the
database engines. it is a bit of code which is exploitable.

the stored procedure gives Boolean values for the
approved or unapproved users. For SQLIA, an attacker
will compose "; SHUTDOWN; - "with login or secret key.
Fig 7 shows stored procedure attack

6.Inference: This attack enables the attacker to change
the behaviour of a database. Furthermore, this kind of
attack can classify into two types i.e. Blind Injection and
Timing attack.

a) Blind Injection: This kind of SQLIA happens when

developers neglect to conceal an error message
which causes the database application uncertain, this
error message help SQLIA to exploit the database

through querying a series of logical questions
through SQL queries.

b) Timing Attacks: This kind of attacks allows an
attacker to gather data from a database by watching
timing delays in the database's replies. This sort of
attack utilizes if condition queries to accomplish a
time delay purpose. To delay database response by a
specified time, WAITFOR keyword is used in the
injected query.

7.Alternate Encodings: This sort of attack happens
when an attacker changes the injected query via utilizing
alternate encoding, for example, ASCII, hexadecimal and
Unicode. By this technique, the attacker can escape from
the whitelist filter, which examines input inquiries for
special known "bad character". At the point when this
sort of attack joins with other attack strategies, it could be
strong, since it can target various layers in the application
so developers should be recognizable to every one of
them to give an effective defensive coding to avoid the
alternate encoding attacks.
Below table 1 list out of the purpose of SQL Injection
Attacks

Table 1: List out the purpose of the attack

 SQLIA

Types
Purpose Example Code

1 Tautologi
es

Bypassing
authenticat
ion

SELECT * FROM users WHERE
uid=‘abcd’ and pwd =’a’ or
‘3’=’3’

2 Union Extracting
Data

www.targetwebsite.com/index.p
hp?id=-8
-union select 1,2,3,4—
-union select 1, version (),3,4—
-union select 1, database
(),3,4—
-union select 1, user (),3,4--

3 Logical
incorrect
Queries

Identify
injectable
parameters

www.targetwebsite.com/index.p
hp?id=1’

4 Piggybac
ked
Queries

 exploit
database

SELECT * FROM users WHERE
login='doe' AND pin=0; drop
table users

5 Stored
Procedur
e

Executing
remote
commands

SELECT accounts FROM users
WHERE login=‟doe‟ AND pass=‟
‟; SHUTDOWN--;

6 Alternate
Encoding
s

Escape
Filter Scan

SELECT accounts FROM users
WHERE login=" AND pin=0
(char(0x73687574646f776e))
– ‘

3.2 Modern Types of SQLIA
Here some of the modern types of SQLIA has been listed
out which are as follows [5]:

1.Fast Flux SQL Injection Attack:
By utilizing this sort of SQLIA, attacker aims to extract
information from the database and phishing. a phishing
attack is a social engineering attack wherein an attacker

Figure 6: Union attack

Figure7: Stored Procedure attack

Figure 4: Piggy-Backed attack

Figure 5: Logically Incorrect attack

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6197

falsely gains sensitive data by incorporating as a third
party from the user. Traditional phishing host can be
recognized effectively just by tracing the open Domain
Name Server (DNS) or the IP address. This traceback
method could prompt the shutdown of the facilitating
sites. The attacker apprehended that directing like that
attack could have a huge impact on load adjusting of a
server; thus, to ensure its resources, the administrator of
phishing sites began utilizing Fast Flux strategy. Fast Flux
is a Domain Name Server strategy which is utilized to
cover up phishing and malware spreading sites behind an
ever-changing compromised host network.

2.Compounded SQL Injection Attack:
This kind of SQLIA is a mix gotten from a combination of
SQLIA and other Web Application Attacks. The attacker
aims to exploit the database and cause serious genuine
impact than other traditional sorts of SQLIA (which are
recently examined). The fast advancement of detection
and prevention strategies against different SQLA,
implemented the anonymous attacker to build up a
procedure called compounded SQL Injection.
compounded SQLIA is described in the following points.

 SQL Injection + DDoS (Distributed Denial of

Service) Attacks:
This type of attack is carried out to exhaust the
resources, hang a server with the goal that the client
will not able to access it. The malicious SQL
commands keeps track with DDOS Attack is to join,
compress, encode etc.

 SQL Injection + XSS (Cross-Site Scripting):
one of the client-side injection attacks is XSS where
an attacker can infuse malicious code into the web
form inputs. After embedding the XSS script, it will
execute and attempt to associate with the database of
an application. With the help of iframe command, the
malicious code can extract data from the database

 SQLIA using Cross-Domain Policies of Rich

Internet application (RIA):
 Cross-Domain policies is an XML file which offers
authorization to the web client application, for
example, Adobe Flash, Adobe Reader, Java, and so on.,
to get to the information in multiple domains. Cross-
domain policies characterize the rundown of RIP
facilitating areas that are permitted to recover
content from the substance suppliers’ space.

 SQL Injection + Insufficient Authentication:
this kind of attack happens when the client or an
administrator is a novice. The security parameters
have not been introduced and the attacker can access
the sensitive content without confirming the
personality of the client. consequently, the attacker
exploits this vulnerability to inject SQL injection
code. Thus, this sort of attack is not as complicated as
contrasted with different kinds of attacks. The initial

step is to discover whether the application has
lacking invalidation and the event that it has, at that
point the SQL Injection attack can take place.

4. Existing System
In the sections, one of the popular detections and

prevention technique against both Classical and Modern

types of attack is discussed.

In [6], the author proposed a technique, called AMNESIA

(Analysis and Monitoring for Neutralizing SQLIA). For

detecting and preventing web application exposures it

combines both dynamic and static analysis. It generates a

different type of query statements by static analysis. In

the dynamic phase, and interprets all queries before

sending them to the database and validates each query in

the dynamic stage.

In [11], SQL Map has been discussed by authors as a

protection of the (SQLI + DNS) Attack. It has the feature of

the DNS Exfiltration and other specialized commands for

DNS prevention and detection. SQL Map is compatible

with most of the SQL Database versions.

5. Proposed Technique
To prevent SQL Injection attacks, this paper purpose a

technique which utilizes Tokenization model for blocking

the malicious code in web form input at the entry point

and a dynamic parsing tree to picture the structure of

SQL command. This technique detects a single quote,

hash, space or double dashes and forms a dynamic tree

structure. The main purpose of this technique is to

prevent the database from most web application

vulnerabilities. This technique is completely based on

Tokenization and dynamic parse tree to prevent SQLIA.

To prevent SQL Injection Attack, the following sequence

takes place for essential steps which are as follows:

1. Input data received from web user input or through a

query string.

2. Dividing the query based on delimiters such as hash,

double dashes or single quote, etc.

3. The programmer applied SQL commands is the head

of the parse tree and the user-provided portion is a

leaf node of the parse tree.

Figure 9: Select query with user input values

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6198

4. The Tokenization process is applied for both the

original query and query with the malicious code and

will be stored in a dynamic table.

5. Both the Dynamic table and the dynamic query will

be sent to the server.

6. At the server-side again tokenization process is

applied and stored in another dynamic table.

7. The server will compare both the table, if both are

same, then the injection is presented in the query.

8. The server will then process the query further to the

database for retrieving records.

9. If both are different server will reject the query and

will forward a custom error message back to the

user.

Dynamic Parse Tree
A dynamic parse tree is a kind of data structure for

parsed SQL commands. Parsing the SQL queries requires

the grammar of the SQL language. By parsing two queries

and comparing their parse tree, we can identify if both

queries are the same.

When an attacker injects malicious code in the query, the

parse tree of the SQL statement will not match the

original queries parse tree.

Example of select query show in Figure 8

By this dynamic tree, when a programmer writes code to

query database will follow a formulation to structure the

query.

The Programmers applied portion is the hard-coded part

of the parse tree and the user-supplied is the parse tree’s

leaf portion. The user inputs values are assigned to the

leaf portion of the parse tree.

An example of the parse tree SQL query is:

SELECT * FROM ‘users’ WHERE username =? and

password =?

The question is the values to be provided by the user to

the leaf nodes.

Another example of the parse tree with Injection SQL

query shown in the following figure 10

The figure 11 represents the potential vulnerability is

that the query is parsed properly will be assumed by the

program and retrieve the values from the database.

Fortunately, Parse tree catches this vulnerability by

parsing the token to comment. The figure is the same

query with the comment token included.

Query Tokenization

Query Tokenization is a technique which converts the

SQL query into tokens. This token is generated by

identifying the quotes, hashes, double dashes or space in

the SQL query. All the keywords in the query which are

before delimiters like space, single quotes, a double dash

will be assigned a token.

An Example of Token Formation show in the Figure 12

Figure 8: Select query with two user input

Figure 3: Comment injected query

Figure 5: Token Formation

Figure 4: Injected Query with another leaf node

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6199

Tokenization process takes place in four steps which are

as follows

1. By replacing all unwanted character from the user

input query

2. Identify all the hash, single quotes, double dash in the

query

3. Break the queries into tokens

4. Store them into Dynamic Table

5. After Tokenization, the queries are forwarded to the

server

Query Tokenization stores the tokens in a dynamic table

with its token names, token types and the occurrences of

the token. The following figure 13 shows the working of

the Tokenization process.

In

the server, the received SQL statement will again follow

the same Tokenization process and stores it in another

dynamic table. The server will compare both the table if

both are same, then the injection is presented in the

query. The server will then process the query further to

the database for retrieving records. If both are different

server will reject the query and will forward a custom

error message back to the user.

Table2: SQLIA Counter measure technique

SQLIA SQL Prevention Techniques
 Existing Proposed
1.Bypass
Authentication

Prevented Prevented

2.Unauthorized
access to
database

Prevented Prevented

3.Injected
Addition Query

Prevented Prevented

4.Unauthorized
Remote
execution
procedure

Prevented Prevented

5.Injected
Union Query

Not
Prevented

Prevented

6.Injected Alias
Query

Not
Prevented

Prevented

7.Injected
Instance Query

Not
Prevented

Prevented

Conclusion
SQL injection attacks are one of the serious threats to the

web application. In SQLIA, the attacker injects malicious

code in user input form or in the query string and access

unauthorized data. To conduct SQL Injection attacks, an

attacker must use SQL keywords such as single quotes,

double dash or double quotes in user input form or in the

query string. This paper proposed techniques which use

Dynamic Parse Tree with Query Tokenization to

eliminate the drawbacks of other existing techniques. The

proposed method consists of Tokenizing the original

query and injected query to find the injected commands

in the user input or in the query string by applying

tokens.

References

[1] A. N, M. V. K. and V. G. , “Preventing SQL Injection
Attacks,” International Journal of Computer
Applications, vol. 52, no. 13, p. 8887, August 2012.

[2] A. Tajpour, S. Ibrahim and M. Z. Heydari, “Detection
of SQL Injection by Honeypot,” PARIS2012,
December 2012.

[3] M. M. a. S. K. Ke Wei, “Preventing SQL Injection
Attacks in Stored Procedures,” IEEE, 2006.

[4] R. ,. R. Devi.D and R. , “A STUDY ON SQL INJECTION
TECHNIQUES,” International Journal of Pharmacy &
Technology, vol. 8, no. 4, Dec-2016.

Figure 6: Tokenization Process

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6200

[5] M. F. Y. Zainab S. Alwan, “Detection and Prevention
of SQL Injection Attack: A Survey,” International
Journal of Computer Science and Mobile Computing,
vol. 6, no. 8, pp. 5-17, August 2017.

[6] H. W. G. J and A. O. , “Preventing SQL injection
attacks using AMNESIA,” International conference
on Software engineering(ICSE), pp. 795-798, 2006.

[7] P. S. Kumar, M. P. and M. K. , “Efficient Method for
Preventing SQL Injection Attacks on Web
Applications Using Encryption and Tokenization,”
International Journal of Latest Trends in
Engineering and Technology (IJLTET), vol. 4, no. 4,
November 2014.

[8] N. A. Lambert and S. K. Lin, “Use of Query
Tokenization to detect and prevent SQL Injection
Attacks,” IEEE, 2010.

[9] G. Shrivastava and K. Pathak, SQL Injection Attacks:
Techniqueand Prevention Mechanism, Ujjan:
International Journal of Computer Applications,
May 2013.

[10] J. Clarke, SQL Injection Attacks and Defense,
Syngress, July 2012.

[11] M. Stampar, “DataRetrieval over DNS in SQL
Injection Attacks,” [Online]. Available:
http://arxiv.org/abs/1303.3047, 2013..

[12] J. P. Singh, “Analysis of SQL Injection Detection
Techniques,” Theoretical and Applied Informatics,
vol. 28, no. 1&2, 2016.

[13] XuePing-Chen, “SQL injection attack and guard
technical research,” Elsevier Ltd, 2011.

[14] N. Basit, A. Hendawi, J. Chen and A. Sun, “A Learning
Platform for SQL Injection,” Association for
Computing Machinery, 2019.

[15] Voitovych O.P., Yuvkovetskyi O.S. and K. L. , “SQL
Injection Prevention System,” Radio Electronics &
InfoCommunications, 2016.

[16] A. B. M. A. A. Y. I. S. M. S. A. and J. A. , “SQL-injection
vulnerability scanning tool for automatic creation of
SQL-injection attacks,” Elsevier Ltd, 2010.

[17] P. Y. and M. , “SQLIA:Detection And
PreventionTechniques: ASurvey,” IOSR Journal of
Computer Engineering (IOSR-JCE).

