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Abstract - Planet identification has typically been a 
tasked performed exclusively by teams of astronomers 
and astrophysicists using methods and tools accessible 
only to those with years of academic education and 
training. NASA’s Exoplanet Exploration program has 
introduced modern satellites capable of capturing a vast 
array of data regarding celestial objects of interest to 
assist with researching these objects. The availability of 
satellite data has opened up the task of planet 
identification to individuals capable of writing and 
interpreting machine learning models. In this study, 
several classification models and datasets are utilized to 
assign a probability of an observation being an 
exoplanet. Since the start of the Wide Angle Search for 
Planets (WASP) program, more than 160 transiting 
exoplanets have been discovered in the WASP data. In 
the past, possible transit-like events identified by the 
WASP pipeline have been vetted by human inspection to 
eliminate false alarms and obvious false positives. The 
goal of the present paper is to assess the effectiveness of 
machine learning as a fast, automated, and reliable 
means of performing the same functions on ground-
based wide-field transit survey data without human 
intervention. 
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1. INTRODUCTION 

The task of identifying planets outside of our solar system, 

known as exoplanets, leads to genuinely novel discoveries. 

Exoplanet identification has traditionally been a time-

intensive task reserved for highly-trained, educated experts 

with access to specialized—and usually expensive—

equipment. These experts relied upon their education, 

intelligence, diligence, and team knowledge in their 

painstaking search for exoplanets using images collected by 

terrestrial observatories and satellite-based telescopes, such 

as Hubble. 

Machine learning techniques have been applied by citizen 

astronomers to classify objects of interest. One of the more 

notable examples of this is the work done by Shallue and 

Vanderberg in their 2011 study (1). Shallue and Vanderberg 

were two machine learning engineers at Google who trained 

a neural network model to scour archived data to identify 

planets using transit events which had gone unnoticed by 

other researchers (1). The “Autovetter Project” created a 

Navie Bayes Model to classify objects of interest based on 

transit data as well (1). In effect exoplanet classification has 

now been crowd sourced. 

Test and train datasets are derived from the labeled 

observations in the KCOI table. KCOI data contains over 

eighty columns, or features, collected and preaggregated 

from Kepler data. This data undergoes cleansing to format 

the data appropriately for feature selection. Once the most 

prominent and influential features are identified, the support 

vector machine is trained, fit, and then used to assign a 

probability of an observation from the KCOI table being an 

exoplanet. 

One of the satellites is new era modern planet-hunting 

satellites is the Kepler space telescope which was launched 

by NASA in 2009. To date, it has been the most successful 

telescope in the discovery of exoplanets [3]. As of October 

2018, Kepler has identified over 9500 objects of interest; 

with over 2000 of these objects of interest being confirmed 

exoplanets7 . Kepler excels at identifying Earth-sized planets 

where past telescopes have only had the power to identify 

larger “gas giant” planets similar to Jupiter [2]. Kepler 

targets known stars to seek out exoplanets in that solar 

system’s habitable zone [3]. The Kepler satellite is 

specifically tuned to detect star brightness [3]. A dip in a 

star’s brightness could indicate one of its planets is passing 

between the star and the observing telescope. A light curve 

from the Kepler space telescope with a “U-shaped” dip that 

indicates a transiting exoplanet.  
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Fig -1: Transit shape 

A dip in a star’s brightness could indicate one of its planets is 

passing between the star and the observing telescope. The 

time it takes for the planet to pass between the start and 

observing telescope is the transit time and is usually 

measured in hours. The magnitude of the reduction in 

brightness and transit time can provide mathematical clues 

to the relative size and position of the planet relative to its 

star [2]. Though Kepler was technically a telescope, it is 

essentially a statistical mission (1). Kepler was purpose-built 

to collect data to support proven exoplanet identification 

techniques [2]. 

2. LITERATURE SURVEY 

Exoplanet transit surveys such as the Convection Rotation 

and Planetary Transits (CoRoT; Auvergne et al. 2009), 

Hungarian-made Automated Telescope Network (HATnet; 

Hartman et al. 2004), HATSouth (Bakos et al. 2013), the 

Qatar Exoplanet Survey (QES; Alsubai et al. 2013), the Wide-

angle Search for Planets (WASP; Pollacco et al. 2006), the 

Kilodegree Extremely Little Telescope (KELT; Pepper et al. 

2007), and Kepler (Borucki et al. 2010) have been extremely 

prolific in detecting exoplanets, with over 2,900 confirmed 

transit detections as of August 9, 20181 . The majority of 

these surveys employ a system where catalogue-driven 

photometric extraction is performed on calibrated CCD 

images to obtain an array of light curves. 

Following decorrelation of common patterns of systematic 

error (eg Tamuz et al. (2005)), an algorithm such as the 

BoxLeast Squares method (Kov´acs et al. 2002) is applied to 

all of the lightcurves. Objects that have signals above a 

certain threshold are then identified as potential planet 

candidates. Before a target can be flagged for follow-up 

observations, the phase-folded light curve is generally 

inspected by eye to verify that a genuine transit is present. 

As these surveys contain thousands of objects, the manual 

component quickly becomes a bottleneck that can slow 

down the identification of targets. Additionally, even with 

training it is difficult to establish consistency in the 

validation process across different observers. It is therefore 

desirable to design a system that can consistently identify 

large numbers of targets more quickly and accurately than 

the current method. Several different techniques have been 

used to try to automate the process of planet detection.  

A common method is to apply thresholds to a variety of 

different data properties such as signal-to-noise ratio, stellar 

magnitude, number of observed transits, or measures of 

confidence of the signal, with items exceeding the given 

threshold being flagged for additional study (For WASP-

specific examples, see Gaidos et al. (2014) and Christian et al. 

(2006)). Applying these criteria can be a fast and efficient 

way to find specific types of planets quickly, but they are not 

ideal for finding subtle signals that cover a wide range of 

system architectures. Machine learning has quickly been 

adopted as an effective and fast tool for many different 

learning tasks, from sound recognition to medicine (See, e.g., 

Lecun et al. (2015) for a review). Recently, several groups 

have begun to use machine learning for the task of finding 

patterns in astronomical data, from identifying red giant 

stars in asteroseismic data (Hon et al. 2017) to using 

photometric data to identify quasars (Carrasco et al. 2015), 

pulsars (Zhu et al. 2014), variable stars (Pashchenko et al. 

2018; Masci et al. 2014; Naul et al. 2017; Dubath et al. 2011; 

Rimoldini et al. 2012), and supernovae (du Buisson et al. 

2015). For exoplanet detection in particular, Navie Bayes 

Classifiers (McCauliff et al. 2015; Mislis et al. 2016), Artificial 

Neural Networks (Kipping & Lam 2017). 

Convolutional Neural Networks (Shallue & Vanderburg 

2018), and Self-Organizing Maps (Armstrong et al. 2017) 

have been used on Kepler archival data. Convolutional 

Neural Networks were trained on simulated Kepler data by 

Pearson et al. (2018). While Kepler provides an excellent 

data source for machine learning (regular observations, no 

atmospheric scatter, excellent precision, large sample size), 

similar techniques can also be applied to ground-based 

surveys, and in fact machine learning techniques have 

recently been incorporated by the MEarth project (Dittmann 

et al. 2017) and NGTS (Armstrong et al. 2018). The work of 

highly skilled astrophysicists or other researchers can be 

redirected towards more specialized exoplanet research. 

Light curves vary greatly, even at a large scale.  Planets 

closer to the sun like Venus, are too hot to support life as we 

know it; while planets further out like Mars and beyond 

thought are too cold. Using a combination of transit time and 

other measurements collected by Kepler. 
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3. PROPOSED SYSTEM 

3.1.Dataset: 

Our main focus in this project is to analyze the features 

extracted from Dataset .which are required by windows 

loader. This contains various elements like size of code, size 

of data, overlay number. With help of this one can 

understand how a program is going to execute.  

3.1.1.Training Set: 

 5087 rows or observations. 
 3198 columns or features. 
 Column 1 is the label vector. Columns 2–3198 are 

the flux values over time. 
 37 confirmed exoplanet-stars and 5050 non-

exoplanet-stars. 
 

3.1.2.Dev Set: 

 570 rows or observations. 
 3198 columns or features. 
 Column 1 is the label vector. Columns 2–3198 are 

the flux values over time. 
 5 confirmed exoplanet-stars and 565 non-

exoplanet-stars. 
 

3.2.Classification Algorithm: 

For predicting exoplnets existence we aim at using three 

classifiers. By using different classification algorithm we can 

get different results. 

3.2.1.Naive Bayes (Nb) Classifier: 

Naive Bayes algorithm is a supervised learning algorithm, 

which is based on Bayes theorem and used for solving 

classification problems.It is mainly used in text classification 

that includes a high-dimensional training dataset.Naïve 

Bayes Classifier is one of the simple and most effective 

Classification algorithms which helps in building the fast 

machine learning models that can make quick predictions. 

Formula :-P(A/B)=(P(B/A)P(A))/P(B)  

Where, 

P(A|B) is Posterior probability: Probability of hypothesis A 

on the observed event B. 

P(B|A) is Likelihood probability: Probability of the 

evidence given that the probability of a hypothesis is true. 

P(A) is Prior Probability: Probability of hypothesis before 

observing the evidence. 

P(B) is Marginal Probability: Probability of Evidence. 

3.2.2.Support Vector Machine (Svm): 

Support vector machines exist in different forms, linear and 

non-linear. A support vector machine is a supervised 

classifier. What is usual in this context, two different datasets 

are involved with SVM, training and a test set. In the ideal 

situation the classes are linearly separable. In such situation 

a line can be found, which splits the two classes perfectly. 

However not only one line splits the dataset perfectly, but a 

whole bunch of lines do. From these lines the best is selected 

as the "separating line". 

3.2.2. Artificial Neural Network: 

Neural Network is built by stacking together multiple 

neurons in layers to produce a final output. First layer is the 

input layer and the last is the output layer. All the layers in 

between is called hidden layers. Each neuron has an 

activation function. Some of the popular Activation functions 

are Sigmoid, ReLU, tanh etc. The parameters of the network 

are the weights and biases of each layer. The goal of the 

neural network is to learn the network parameters such that 

the predicted outcome is the same as the ground truth.  

 

Fig -2: Multilayer Artificial Neural Network 
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3.3. Flowchart: 

 
 
4. RESULT & CONCLUSION 

Using multiple machine learning models is an effective 

framework that can be modified and applied to a variety of 

different large-scale surveys in order to reduce the total time 

spent in the target identification and ranking stage of 

exoplanet discovery. Combining the results from additional 

machine learning methods could further improve the 

predictions. An additional advantage of this approach is that 

the algorithms can be quickly re-trained as new information, 

such as new known classifications from completed follow-up 

observations, become available. 

It has proven to be very effective in producing new 

candidates for future follow-up and eventual planet status. 

The large size of the WASP archive makes it undesirable for 

human observers to manually look at each one to determine 

whether it is a good candidate for further study. The 

machine-learning framework we have created provides a 

tool for the observer wanting to re-examine the full set of 

data holdings in any WASP field, enabling fast re-

classification of all targets showing transit-like behavior and 

identification of new targets of interest.  
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