
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7593

Malign detection based on permissions identification and pruning
system using ML approach

Dr. Bharathi M1, Harshavardhan J2, Harshith P3 , Koduru Siva Krishna4, Mithun A5

1Associate Professor, Dept. of CSE, S J C Institute of Technology, Chickballapura, Karnataka, India
2Student, Dept of CSE, S J C Institute of Technology, Chickballapura, Karnataka, India
3Student, Dept of CSE, S J C Institute of Technology, Chickballapura, Karnataka, India
4Student, Dept of CSE, S J C Institute of Technology, Chickballapura, Karnataka, India
5Student, Dept of CSE, S J C Institute of Technology, Chickballapura, Karnataka, India

---***---
Abstract - Android is most widely used platform by the
users all around the world. Android Platform led to the
immense growth of mobile apps both benign and malign
apps. As we all know Google Play is the most trusted
Distributor of Android apps. Even Google Play is failing to
detect malign apps .With the immense use of Smartphone
for accessing online services, users store general, and
confidential information on mobile device. Availability and
Accessibility of sensitive information has encouraged cyber
criminals to use features of smartphones for cyber attacks.
Numerous malware detection tools have been developed,
including system-level and network level approaches.
However, scaling the detection for a large bundle of apps
remains a challenging task. In this paper based on
permissions asked by the apps during runtime, we will
detect and will allow users to disable such permissions.
Based on the behavioral pattern of permissions asked by
app we classify it as an benign or malign. The Proposed
System initially prunes the number of permissions to be
analyzed in the three levels and then classification of apps
as benign or malign is done by Support Vector
Machine(SVM) Algorithm. After the Classification of apps as
benign or malign the results are stored in a well maintained
database for future reference.

Key Words: Benign, Malign, Support Vector
Machine(SVM).

1.INTRODUCTION
Malware can simply mentioned as an software, or
piece of a code which causes damage to the personal
computer system which it resides on. There are five
styles of malwares: viruses, worms, trojan horses,
spyware. Viruses damage their target computer by
corrupting data, reformatting their fixed disk, or
completely shut their system down. They also steal
information, affect computers and networks, create
botnets, steal money, render advertisements etc.
viruses copy them self and spread to other
computers by attaching themselves with programs

and executing code when a user runs the infected
program. An virus requires human activity to spread
to other computers and are usually spread through
email attachments and internet downloads. worms
usually are spreads through computer networks by
exploiting package weaknesses. it's an standalone
program or piece of code that has the capacity to
duplicate itself to infect other computers, without
requiring action from anyone. worms can spread fast,
worms are mostly used for executing a payload – a
chunk of code that has the capacity to cause damage
to the system. Payloads has power to delete files on a
bunch system, encrypt data for a ransomware attack,
steal information, delete files, and make botnets.
Trojan tries enter host system disguised form as an
normal file, harmless file or program so as to trick
users and make them download and install the
malware, once we install a Trojan, we are giving
cyber criminals access to our system, doing this
permits the cyber criminal to steal data, install few
more malware, modify files, monitors the user
activity, destroy data, steal financial information,
conduct denial of service (DoS) attacks on targeted
web addresses, and etc. Trojan malware don’t have
the flexibility duplicate by itself, however, if its
combined with a worm, the damage Trojans can
cause to users and systems is limitless. Spyware is
additionally an variety of malware that Installed on
our computer without our own knowledge, spyware
is especially designed to trace our browsing habits
and internet activity. Capabilities of spying include
activities like monitoring, collecting data of
keystrokes, harvesting data of account information,
logins, and financial data, and etc. Spywares are
spread by exploiting software vulnerabilities,
bundling them with an legitimate software, or within
the Trojans.In our Paper we Analyse the permissions
asked by the apps and classify them as benign or

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7594

malign. Generally these type permissions requested
crop up the primary time an app needs access to
sensitive hardware or data on your phone or tablet. If
you’ve installed a camera app, for instance, it'll need
your permission to access the camera before it can
actually take photos. So, additionally to being
cautious about the apps you put in from google play,
its also important to grasp which permissions those
apps request from you.
System permissions are divided into two groups
namely normal and dangerous. Normal permissions
asked by apps are allowed by default, because they
don’t cause risk to privacy .Dangerous permissions
asked by apps, however, give apps access to things
like calling history of user, private messages of user,
location of user, camera of user, microphone of user,
and etc. Therefore, Android will always ask us to
approve dangerous permissions. we either used to
allow all permissions an app needed to function
before installation or we declined them all, which
meant you couldn’t install the app. Apps need access
to content on our phone to fulfil their functionality ,a
picture-editing app asks access of phone camera and
media files in order to edit pictures saved in your
phone. Permissions alone are harmless and are useful
to produce users a decent mobile experience. But
since the list of permissions required is long and
doesn’t explain its effect, a right away reaction is to
treat it the way you'd a ‘Terms and conditions’
agreement accept without reading the list and move
to the subsequent step.

2.LITERATURE SURVEY

Many of the Works been carried out in knowing
about the Malign apps and their behavior and also
different techniques have been used to detect malign
apps.

In 2012, M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X.
Jiang utilized static analysis to discover malicious
behaviors in Android apps. However, static analysis
approaches generally assume more behaviors are
possible than would be ,which may lead to a large
number of false Positives[1].

In 2014, W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-
G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth
utilized dynamic analysis approach to improve the
accuracy, researchers proposed the dynamic analysis
approach to capture real-time execution context.

TAINTDROID Dynamically tracks multiple sensitive
data source simultaneously using tainting
analysis[2].

In 2014, D. Arp, M. Spreitzenbarth, M. H¨ubner, H.
Gascon, K. Rieck, and C. Siemens utilized both static
analysis approach as well as dynamic analysis
approach and Machine learning Techniques to detect
Android Malware. The Experimental Result has high
detection Accuracy by incorporating as many
features as Possible to help detection[3].

In 2015, S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao,
and M. Conti Proposed TextDroid, an effective and
automated malware detection method combining
natural language processing and machine learning.
TextDroid is able to extract differential features to
classify malware samples. A , malware detection
model is then developed to detect mobile malware
using Support Vector Machine(SVM)[4].

In 2018,Sonali Kothari Tidke, Pravin P Karde, Vilas
Thakare ,provided a solution that will detect harmful
permissions and will allow user to disable such
permissions. To demonstrate the same , a sample
malware attacks is created[5].

In 2016, Z. Li, L. Sun, Q. Yan, W. Srisa-an, and Z. Chen,
in this they used an approach that uses network
traffic analysis to build many or various models in an
automated fashion using a supervised method over a
set of labeled malware network traffic. Each and
every model is constructed by extracting common
identifiers from various HTTP header fields.
Clustering is used for improving the level
classification accuracy[6].

3. METHODOLOGY

Our Proposed System has two stages:(i)Data
Pruning (ii)Machine-Learning based Malware
Detection

(i)Data Pruning :The first component of our system is
the data pruning process to identify only important
permissions to eliminate the need of considering all
available permissions in Android. This stage further
has three sub stages. The complete three sub-stages
procedure is illustrated in Figure below:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7595

Fig.1:Data Pruning

1) Permission Ranking with Negative Rate
(PRNR): This uses two matrices, M and B. M
is list of permissions employed by malware
and B may be a list of permissions employed
by benign apps. Mij where jth permission is
requested by the ith malware ,‘1’ indicates
yes, ‘0’ indicates no. Bij where jth permission
is requested by the ith benign app . Note that
the dimensions of B are often much larger
than the dimensions of M. With our ranking
scheme, we prefer the info assail the 2
matrices to be balanced. Training over
imbalanced dataset can cause skewed
models. To balance the 2 matrices, we use
Equation 1 to calculate the support of every
permission within the larger dataset so
proportionally scales down the
corresponding support to match that of the
smaller dataset. just in case that the amount
of rows of B is greater than that of M, we
have:

Pj is that the jth permission, and SB(Pj) is that
the support of jth permission in matrix B.
Permission ranking is implemented using
Equation 2:

This algorithm is employed to perform
ranking of our datasets. within the formula
above, R(Pj) represents the speed of jth
permission. The results of R(Pj) contains a
value ranging between [-1, 1]. If R(Pj) = 1,
this suggests that permission Pj is merely
utilized in malicious dataset, which may be a
high risk permission. If R(Pj) = -1, this

suggests that permission Pj is merely utilized
in benign dataset which may be a low risk
permission. If R(Pj) = 0, this suggests that Pj
has little impact on malware detection
effectiveness. Since both -1 and 1 are
important, we simply take absolutely the
value of every number and therefore the
results of |R(Pj)|ranges between [0, 1]. We
then evaluate malware detection by using the
subsequent metrics precision, recall(true
positive rate), false positive rate, accuracy,
and F-measure. Next, we decide the highest
three permissions in both lists to create
malware detection. After This, we repeat the
method with increase within the number of
permissions to use for malware detection
until the detection metrics plateau. the most
goal is to seek out the tiniest number of
permissions that yields a really similar
malware detection effectiveness as that of
using the whole data set.

2) Support based Permission Ranking: To
further reduce the quantity of permissions,
we turn our focus to the support of every
permission. Typically, if the support of a
permission is simply too low, it doesn't have
much impact on malware detection. as an
example, we find the permission INTERNET
only in benign apps.

 Fig 2:Matrix Represenation of Permissions

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7596

As such, we might imagine that any app that
uses INTERNET is benign. However, this
permissions is employed only by one app out
of over 310,926 benign apps. As such, only
hoping on the speed provided by Permission
Ranking with Negative Rate is inaccurate. We
also must prune out permissions with low
support.

Apriori Algorithm:

To find out permissions that occur together,
we propose a permission mining with
association rules (PMAR) mechanism using
association rule mining algorithm.
Association rule mining has been used for
discovering meaningful relations between
variables in large databases. For instance, if
event A and B always co-occur, it is highly
likely that these two events are associated. In
this paper, we only consider rules with high
confidence, so that applying PMAR will only
produce a small number of rules. We employ
Apriori , a commonly used association mining
algorithm, to generate the association rules.
Apriori uses a breadth-first search strategy
to count the support of item sets and uses a
candidate generation process, which exploits
the downward closure property of the
support. Here, we only want to generate the
association rules with high confidence even if
the permissions have small support values.

Fig.3:Apriori Algorithm

3) Permission Mining with Association Rules:
After pruning permissions by using

Permission Ranking with Negative Rate and
Support based permission ranking, we want
to further explore approaches that can
reduce non-influential permissions. By
inspecting the reduced permission list that
contains obvious permissions, we find three
pairs of permissions that always appear
together in an app. For example, permission
WRITE SMS and permission READ SMS are
always used together. They both also belong
to the “dangerous” permission list provided
by Google. As such, we can associate one,
which has a higher support, to its partner. In
this example, we can remove permission
WRITE SMS. In order to find permissions that
occur together, we apply permission mining
with association rules . In all, we are able to
remove three additional permissions, giving
us permissions that we consider as obvious.

(ii) Machine-Learning based Malware Detection: We
first use SVM and a tiny low dataset to check our
proposed MLDP model. SVM determines a
hyperplane that separates both classes with a
maximal margin supported the training dataset that
has benign and malicious applications. during this
case, one class is related to malware, and therefore
the other class is related to benign apps. Then, we
assume the testing data as unknown apps, which are
classified by mapping the info to the vector space to
make your mind up whether it's on the malicious or
benign side of the hyperplane. Then, we are able to
compare all analysis results with their original
records to judge the malware detection correctness
of the proposed model by using SVM.

Support Vector Machine(SVM) Algorithm:

Support Vector Machine (SVM) could be a supervised
machine learning Algorithm which might be used for
both classification or regression challenges. during
this we use SVM and a tiny low dataset to check our
pruned permission Data sets. SVM determines a
hyperplane that separates both classes with a margin
supported the training dataset that features non-
malicious and malicious applications. during this
case, one class is related to malicious, and therefore
the other class is related to non-malicious
application. Then, we assume the testing data as
unknown apps, which are classified by mapping the
information to the vector space to make a decision
whether it's on the malicious or benign side of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7597

hyperplane. Then, we will compare all analysis
results with their original records to gauge the
malware detection correctness of the proposed
model by using SVM.

Fig.4:SVM Algorithm Pseudocode

Comparison with Other Approaches:

In this section, we compare our detection results
with other state-of-the-art malware detection
approaches, listed as follows: DREBIN[3] is an
approach that uses static analysis to form data set
supported permissions and other features from apps.
After this we use Support Vector Machine(SVM)
algorithm to classify malware dataset. We did not
reimplement their approach since it requires
significant program analysis additionally to
permission analysis, we compare our results with the
already reported results. PERMISSION-INDUCED
RISK MALWARE DETECTION[8] is an approach that
applies permission ranking, like mutual information.
They use the permission ranking and choose the very
best 40 risky permissions for malware detection. We
reimplemented their approach for comparison. Note
that in their paper, they used a special data set and
thus the ratio of their malicious and benign apps in
their dataset is dominated by benign apps. As such,
their reported results, especially false positive rate,
are significantly different than the results achieved
using our data set.

The comparison results are shown in Table I.
DREBIN uses more features than our approach,
including API calls and network addresses. As a

result, DREBIN is healthier than
PERMISSIONCLASSIFIER in detection accuracy. We
compared the results against 10 currently used anti-
virus scanners . once we combine our approach with
FT, we are ready to achieve the highest detection rate
(93.62%) using only 22 permissions. Discussion:
when we compared results of our work with the
opposite approaches that consider only risky
permissions, our approach considers a criteria that
also include non-risky permissions , which are only
employed in benign apps and have high support
values. We deem the risky and non-risky permissions
with high support values as significant permissions,
allowing our approach to be simpler in
distinguishing between malicious and benign apps
than other existing approaches. We noticed that the
permission lists employed by DREBIN contain
various meaningless features, we can achieve
performance improvements are by combining our
approach with FT into DREBIN to reinforce both
malware detection accuracy and period performance.
we'll explore this integration in our future work,
even though we consider less number of
permissions, our approach performance is healthier
than most of currently used malware scanner today,
this will be because most of these techniques depend
on signature matching ;so if a method of malware
signatures isn't available, the system wouldn't be
able to detect that specific type. We also show that
our approach is easier than DREBIN once we
combine our permission pruning with FT. DREBIN
could also be a more complex malware detection
approach that also uses static program analysis. We
try to also explore a mix of using static program
analysis with our approach to assess whether we are
ready to achieve higher detection effectiveness.

4.CONCLUSION
In this approach, we have shown that it is possible to
reduce the number of permissions to be analyzed for
mobile malware detection, while maintaining high
effectiveness and accuracy. Our approach has been
designed to extract only significant permissions
through a systematic,3-level pruning approach.
Based on the dataset we took, it includes over 2,000
malware, we only need to consider 22 out of 135
permissions to improve the runtime performance by
85.6% while achieving over 90% detection accuracy.
The extracted significant permissions can also be
used by other commonly used supervised learning
algorithms to yield the F-measure of at least 85% in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7598

55 out of 67 tested algorithms. Our approach is
highly effective, when compared to the state-of-the-
art malware detection approaches as well as existing
virus scanners. It can detect 93.62% of malware in
the data set, and 91.4% unknown/new malware.

REFERENCES

[1] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,

“Riskranker: scalable and accurate zero-day
android malware detection,” in Proceedings
of the 10th international conference on Mobile
systems, applications, and services. ACM, 2012,
pp. 281–294.

[2] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G.

Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth, “Taintdroid: an informationflow tracking
system for realtime privacy monitoring on
smartphones,” ACM Transactions on Computer
Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[3] D. Arp, M. Spreitzenbarth, M. H¨ubner, H. Gascon,

K. Rieck, and C. Siemens, “Drebin: Effective and
explainable detection of android malware in
your pocket,” in Proceedings of the Annual
Symposium on Network and Distributed System
Security (NDSS), 2014.

[4] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M.

Conti, “Textdroid: Semantics-based detection of
mobile malware using network flows.”

[5] Sonali Kothari Tidke, Pravin P Karde, Vilas

Thakare,”Detection and Prevention of Android
Malware thru Permission Analysis.

[6] Z. Li, L. Sun, Q. Yan, W. Srisa-an, and Z. Chen,

“Droidclassifier: Efficient adaptive mining of
application-layer header for classifying android
malware,” in International Conference on
Security and Privacy in Communication Systems.
Springer, 2016, pp. 597–616.

[7] SigPID:Significant Permission Identification for

Android Malware Detection Lichao Sun,
Zhiqiang Li, Qiben Yan, Witawas Srisa-an and Yu
Pan University of Nebraska–Lincoln Lincoln, NE
68588 {lsun,zli,qyan,witty,ypan}@cse.unl.edu.

[8] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X.

Zhang, “Exploring permission-

inducedriskinandroidapplicationsformaliciousa
pplication detection,” Information Forensics and
Security, IEEE Transactions on, vol. 9, no. 11, pp.
1869–1882, 2014.

