
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1819

Recognition of Labels for Hand Drawn Images

Darshan Kothawade1, Ibtisham Kazi2, Jatin Mhatre3, Kavitha Nair4, Dr. Prashant Nitnaware5

1,2,3,4B.E. Computer Engineering Student, Pillai College of Engineering, Navi Mumbai, Maharashtra, India
5Professor, Dept. of Computer Engineering, Pillai College of Engineering, Navi Mumbai, Maharashtra, India

---***---

Abstract - People have a brilliant capacity to perceive
freehand sketch drawings in spite of their theoretical and
meager structures. Understanding freehand sketches with
automated methods is a challenging task due to the diversity
and abstract compositions of these sketches. In this project, we
aim to develop an efficient freehand sketch recognition
scheme, which is based on Convolutional Neural Networks
(CNNs). Specifically, we seek to create a Keras model to
classify sketches using Google's 'Quick, Draw!' dataset, which
contains more than 50 million drawings across 345 categories.
Further, we aim to integrate a custom model to an Android
app using TensorFlow Lite. Such a system will be of great
value to a variety of applications, such as human-computer
interaction, sketch-based search, game design, and education.

Key Words: Free Hand Sketch, Quick Draw, Image
Processing, Convolutional Neural Networks, Sketch
Recognition

1. INTRODUCTION

In November 2016, Google released an online game titled
Quick, Draw! that moves players to draw a given object in
under 20 seconds. However, this is no ordinary game; while
the user is drawing, an advanced neural network attempts to
guess the category of the object, and its predictions evolve as
the user adds more and more detail. Beyond just the scope of
Quick, Draw!, the ability to recognize and classify hand-
drawn doodles has important implications for the
development of artificial intelligence at large. For example,
research in computer vision and pattern recognition,
especially in subfields such as Optical Character Recognition
(OCR), would benefit greatly from the advent of a robust
classifier on high noise datasets. For the purposes of this
project, we choose to focus on classification of the finished
doodles in their entirety. While a simpler premise than that
of the original game’s, this task remains difficult due to the
large number of categories (345), wide variation of doodles
within a category, and confusing similarity between doodles
across other categories. Thus, we create a multi-class
classifier whose input is a Quick, Draw! doodle and whose
output is the predicted category for the depicted object [1].

2. LITERATURE SURVEY

A. Quick, Draw! Doodle Recognition: The paper was
developed by the author Kristine Guo, James WoMa, and Eric
Xu. In this paper, a multi-class classifier was built to assign
hand-drawn doodles from Google’s online game Quick,
Draw! into 345 unique categories. Multiple variations of k-

nearest neighbors and a convolutional neural network were
implemented and compared which achieved 35% accuracy
and 60% accuracy, respectively [1].

B. Image Classification with Deep Learning and
Comparison between Different Convolutional Neural
Network Structures using TensorFlow and Keras: The
paper was developed by the author Karan Chauhan, and
Shrwan Ram. In this paper, a large number of different
images, which contain two types of animals, namely cat and
dog are used for image classification. Four different
structures of CNN are compared on CPU systems, with four
different combinations of classifiers and activation functions.
For Binary image classification, combination of sigmoid
classifier and Relu activation function gives higher
classification accuracy than any other combination of
classifier and activation function [2].

C. Feature-level fusion of deep convolutional neural
networks for sketch recognition on smartphones: The
paper was developed by the author E. Boyaci, and M. Sert. In
this paper, feature-level fusion is implemented that use deep
convolutional neural networks (CNNs) for recognizing hand-
free sketches and develop a sketch recognition application
for smartphones based on client-server application
architecture. Results on TU-Berlin hands-free sketch
benchmark dataset show that, feature-level fusion scheme
achieves a recognition accuracy of 69.175%. This outcome is
promising when contrasted and the human acknowledgment
exactness of 73.1% on the equivalent dataset [3].

D. Free-hand Sketch Recognition Classification: The paper
was developed by the author Wayne Lu, and Elizabeth Tran.
In this paper, a publicly available dataset of 20,000 sketches
across 250 classes from Eitz et al. is used, Convolutional
neural networks (CNNs) is applied in order to improve
performance to increase the recognition accuracy on
sketches drawn by different people. The effects of several
hyperparameters on overall performance are analyzed using
a residual network (ResNet) approach [4].

E. Hand Drawn Sketch Classification Using Convolutional
Neural Networks: The paper was developed by the author
Habibollah Agh Atabay. In this paper, the accuracy of sketch
image classification is improved by training a few deep
CNNs. The size of inputs in the currently used architectures
of CNNs is greater than 200×200 pixels which has limited the
accuracy of classification. Input is given in the form of tiny
images, thus the architecture of CNNs are simplified and thus
be trained in a reasonable time, in CPU mode and increase
the speed of training [5].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1820

Table -1: Summary of Literature Survey

Literature Observations

Kristine Guo et
al. 2018 [1]

Quick Draw! dataset contains
numerous preprocessed images
of various categories that will
help in making an efficient
model.

Karan Chauhan
et al. 2018 [2]

The comparison between
different neural networks will
help in the optimal selection of
the neural network that will be
used to train the model with the
help of TensorFlow and Keras.

E. Boyaci et al.
2017 [3]

Understanding various datasets
for the implementation of the
project.

Wayne Lu et al.
2017 [4]

Better understanding of CNN
will help in an efficient model
creation.

Habibollah Agh
Atabay et al.
2016 [5]

Studying CNN on different

datasets will help in analyzing
the model thus resulting in
better outcomes.

3. PROPOSED WORK

We have proposed a Convolutional Neural Network

(ConvNet/CNN) based sketch recognition model which is a

Deep Learning algorithm which can take in an input image,

assign importance (learnable weights and biases) to various

aspects/objects in the image to differentiate one from the

other. The pre-processing required in a ConvNet is a lot

lower when contrasted with other classification algorithms.

In this project, we explore four different convolutional

network architectures. The basic architecture consists of an

initial 7x7 convolutional layer. This layer is then followed by

a series of 12 3x3 residual units, for a total of 25

convolutional layers (not including layers used for residual

projection). Every third residual unit, the feature map size is

halved by increasing stride while the number of filters is

doubled. At the end of the network, global average pooling is

used and followed by a fully connected layer to output logits

for softmax cross-entropy loss. Dropout is applied on 1) the

initial input, 2) every third residual unit, and 3) before the

fully connected layer [6][7].

3.1 System Architecture

We implement a convolutional neural network (CNN), a
state-of-the-art model known for being able to recognize and
quickly learn local features within an image. For a 28 × 28 ×
1 doodle, we first run the image through two convolutional
filters. Furthermore, we add zero padding border around the
image so that the resulting outputs have the same width and
height. The output then goes through a max pooling layer
with a kernel size of 2 × 2. Following this, we flatten the
tensor and feed the result through two fully-connected or
dense layers. Each layer uses the ReLu activation function as
well as dropout. The output then goes through one more
affine transformation before we apply softmax to generate
probabilities for each class.

Layers used to build the model architecture: Input, Dense,
Dropout, Flatten, Conv2D, MaxPooling2D.

The system architecture is given in Figure 1. Each block is
described in this Section.

Figure 1: Proposed system architecture layout

3.1.1 Convolutional Neural Network

CNN image classifications take an input image, and classify it
under certain categories after processing it. Computers see
an input image in the form of an array of pixels. It depends
on the image resolution. It will see h x w x d (h = Height, w =
Width, d = Dimension) based on the image resolution. For
instance, an image of 4 x 4 x 1 array of matrix of grayscale
image and an image of 6 x 6 x 3 array of matrix of RGB (3
refers to RGB values).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1821

Figure 2: Array of RGB matrix

Each input image will pass it through a series of convolution
layers with filters (kernels), pooling, fully connected layers
and then apply Softmax function to classify an object with
probabilistic values between 0 and 1. The complete flow of
CNN to process an input image and classify the objects is
explained in the below figure.

Figure 3: Neural network with many convolutional layers

3.1.2 Convolution Layer

Convolution layer extracts features from an input image. The
relationship is preserved by Convolution between pixels by
learning image features using small squares of input data.
Two inputs such as image matrix and a filter or kernel are
taken by a mathematical operation.

Figure 4: Image matrix multiplies kernel/filter matrix

3.1.3 Strides

Stride is the number of pixel shifts over the input matrix. We
move the filters to 1 pixel at a time when the stride is 1. We
move the filters to 2 pixels at a time when the stride is 2 and
so on. The convolution would work with a stride of 2 as it is
shown in the below figure.

Figure 5: Stride of 2 pixels.

3.1.4 Padding

Sometimes the filter does not fit perfectly with the input
image. We have two options:

1. For the picture to fit, pad it with zeros (zero-
padding).

2. The part of the image can be dropped where the
filter did not fit. This is called valid padding which
keeps only the valid part of the image.

3.1.5 Non Linearity (ReLU)

ReLU - Rectified Linear Unit for a non-linear operation. The
output is

ƒ(x) = max(0,x).

ReLU’s purpose is to present non-linearity in our ConvNet.
As, the real world data would want our ConvNet to learn
would be non-negative linear values.

Figure 6: ReLU operation

3.1.6 Pooling Layer

When the images are too large the number of parameters
would be reduced by the Pooling layers section. Spatial
pooling is also referred to as subsampling or downsampling
which reduces the dimensionality of each map but retains
the important information.

Types of Spatial pooling:

● Max Pooling
● Average Pooling
● Sum Pooling

The largest element is then taken by Max pooling from the
rectified feature map. The average pooling can also be taken
by taking the largest element. Sum pooling is the sum of all
elements in the feature map.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1822

Figure 7: Max Pooling

3.1.7 Fully Connected Layer

The layer we call the FC layer, we flattened our matrix into
vector and feed it into a fully connected layer like neural
network.

Figure 8: After pooling layer, flattened as FC layer

Feature map matrix will be converted as vector (x1, x2, x3,
…) in the above diagram. We combined these features
together to create a model, with the fully connected layers.
Finally, we classify the outputs using an activation function
such as softmax or sigmoid.

Figure 9: Complete CNN architecture

4. PERFORMANCE AND EVALUATION

The implementation detail is given in this section.

4.1 Dataset and Parameters

Google publicly released a Quick, Draw! dataset containing
over 50 million images across 345 categories. There are
multiple different representations for the images. One
dataset represents each drawing as a series of line vectors,
and another contains each image in a 28x28 grayscale
matrix. We use the latter version of the dataset because we

focus on classification of the entire doodle in this project. We
treat each 28x28 pixel picture as a 784-dimensional vector.

Figure 10: Sample doodles of a sock, elbow, and carrot

(left to right) from the training dataset

To test our models, we split the data into two different folds:
80% for training and 20% for testing. To reduce
computation time and storage of the data, we decided to
create a smaller subset of the original dataset by randomly
sampling 10% of the drawings from each category. As a
result, we obtain approximately 4,000 examples for the
training set and 1,000 examples for the testing set.

While raw accuracy is a good measure of a model’s
performance, it penalizes harshly for an incorrect prediction
(wrong predictions receive 0 points and right predictions
receive 1 point). Since we have so many categories, including
some that are extremely similar such as “cake” and “birthday
cake”, we evaluate our methods not only with raw accuracy
but also with a scoring metric that is more lenient of
incorrect predictions. We use the top_k_categorical_accucary
metric provided by Keras which calculates the top-k
categorical accuracy rate, i.e. success when the target class is
within the top-k predictions provided [1].

4.2 Evaluation Parameters

While raw accuracy is a good measure of a model’s
performance, it penalizes harshly for an incorrect prediction
(wrong predictions receive 0 points and right predictions
receive 1 point). Since we have so many categories, including
some that are extremely similar such as “cake” and “birthday
cake”, we evaluate our methods not only with raw accuracy
but also with a scoring metric that is more lenient of
incorrect predictions. We use the top_k_categorical_accucary
metric provided by Keras which calculates the top-k
categorical accuracy rate, i.e. success when the target class is
within the top-k predictions provided.

4.3 Performance Evaluation

To achieve the best performance for the CNN model, we
tuned various hyperparameters including the number of
units in each dense layer, dropout rate, and learning rate.
Overall, we found that the model producing the best
prediction had two dense layers with 512 and 256 units with
each layer having a dropout rate of 0.2. Furthermore, we
trained our model with a learning rate of 0.001 and batch
size of 256 across 10 epochs.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1823

Fig 11: Training Accuracy

As seen from figure, the end architecture fits the data well
as the validation accuracy has more or less converged
after the 6th epoch.

Furthermore, following were the accuracies achieved on
the testing dataset: 1. Final accuracy: 65.57% 2. top-3
accuracy: 82.71%

5. RESULT

Below is the demonstration of the Sketch Recognition
application that was built using the model.

Fig 12: Sketch Recognition App

6. CONCLUSION

We have presented our CNN architecture for freehand sketch
recognition. The different pooling layers, strides, padding,
ReLu have been explained. The different hybrid approaches
have also been described. The comparative study of various
techniques mentioned above is presented in this report. The
hybrid approach is proposed with a combination of different
hybrid strategies for the development of an application with
the help of convolutional neural networks by using Keras
model, TensorFlow lite. Evaluation parameters which are

used to evaluate the performance and accuracy of the system
are described within the report. The standard dataset or
variable inputs are defined that may be used in an
experiment for this system. The two datasets identified for
the experiments are ‘Quick, Draw!’ and ‘TU-Berlin sketch’.
The learned sketch feature representation could benefit
other sketch-related applications such as sketch-based
image retrieval and automatic sketch synthesis, which could
be interesting venues for future work.

We would like to experiment with advanced CNN
architectures such as VGG-Net and ResNet, which have
already reached state-of-the-art levels of image classification
performance, although not for sketches in particular.
Additionally, we have only used approximately 10% of the
total Quick, Draw! dataset, and we believe training our
models on the complete dataset would improve accuracy.

ACKNOWLEDGEMENT

It is our privilege to express our sincerest regards to our
supervisor Dr. Prashant Nitnaware for the valuable inputs,
able guidance, encouragement, whole-hearted cooperation
and constructive criticism throughout the duration of this
work. We deeply express our sincere thanks to our Head of
the Department Dr. Sharvari Govilkar and our Principal Dr.
Sandeep M. Joshi for encouraging and allowing us to present
this work.

REFERENCES

[1] Kristine Guo, James WoMa, Eric Xu, “Quick, Draw!

Doodle Recognition” Stanford University, 2018.
[2] Karan Chauhan, Shrwan Ram, “Image Classification with

Deep Learning and Comparison between Different
Convolutional Neural Network Structures using
TensorFlow and Keras”, M.B.M. Engineering College
Jodhpur, India, International Journal of Advance
Engineering and Research Development (IJAERD), 2018.

[3] E. Boyaci and M. Sert, "Feature-level fusion of deep
convolutional neural networks for sketch recognition on
smartphones," 2017 IEEE International Conference on
Consumer Electronics (ICCE), Las Vegas, NV, 2017.

[4] Wayne Lu, Elizabeth Tran, “Free-hand Sketch
Recognition Classification”, Stanford University, 2017.

[5] Habibollah Agh Atabay, “Hand Drawn Sketch
Classification Using Convolutional Neural Networks”,
Gonbad Kavous University, Iran, 2016.

[6] https://medium.com/@RaghavPrabhu/understanding-
of-convolutional-neural-network-cnn-deep-learning-
99760835f148

[7] https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53

https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

