
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1918

Centralized Firewall for Software-Defined Networking (SDN)

Sheetal Khodbhaya1, Nimit Tiwari2, Sachin Mahto3, Jishnu Unnikrishnan4,

Prof. K.S. Charumathi5

1,2Student, Department. of Computer Engineering, Pillai College of Engineering, Maharashtra, India
3,4Student, Department of Computer Engineering, Pillai College of Engineering, Maharashtra, India
5Professor, Department of Computer Engineering, Pillai College of Engineering, Maharashtra, India

---***----------------------‐--‐----------‐------------------------------‐-
Abstract - Software-Defined Networking (SDN) is an

architecture that aims to make networks agile and flexible

by introducing programmability in networks. In SDN, the

functionality of the network device is divided into control

plane and forwarding plane. At the control plane, the SDN

Controller provides APIs which can be used by the

applications. It gives the forwarding logic in the form of flow

rules to the OpenFlow Switches, at the forwarding plane, to

forward the packets. We propose to implement a centralized

firewall for SDN which will get the network details from the

SDN Controller, analyze it, and will push the rules to the

SDN controller using RESTful APIs.

KEYWORDS: Software Defined Networks (SDN),

Firewall, Openflow Protocol, OpenFlow-Enabled Switches,

SDN Controllers.

1. INTRODUCTION

In traditional networks, both control and data planes are
tightly integrated in physical devices. To specify routing
policies in traditional networks, network administrators
must maintain forwarding rules individually in all
switches and routers in the network. In contrast, SDN has
brought significant changes to how networks function by
decoupling the control plane from the data plane. The
decoupling abstracts the higher level functionality and
moves the intelligence of network configuration to a
centralized controller. This innovation has influenced both
industries and academic institutions to persistently work
towards adaptation and evolution of SDN. The two main
advantages of SDN (central programmability and
visibility) tremendously improve cost-effectiveness and
ease of maintenance in these complex networks.

1.1 Definitions

Software-Defined Network (SDN) : It is an architecture

that acts as a strategic control point created to address the

issues related to integrated networks. SDN is not a

mechanism, it is a framework to solve a set of issues

related to network and packets. To increase the cost-

effectiveness and logical control, SDN provides services

like flow paths, packet handling and topology. SDN

enhances open interfaces and programmability of the

network through separation of network traffic delivery

and network configuration. Despite the hype, SDN

controllers and related protocols are rapidly evolving the

current network technologies to address the demands for

scaling in complex enterprise networks. The rate at which

SDN frameworks are evolving continues to overtake

attempts to address their security issues. Software defined

networking enables the network creation without any use

of hardware, hence it is a cost saving work. SDN was

commonly connected with the OpenFlow protocols for

remote communication with the network plane of network

switches.

Firewall: It is a system designed to prevent unauthorized

incoming network packets, which come from various

sources, as well as outgoing network packets. It can

monitor and control the flow of data which comes into the

network from different sources, and works on the basis of

predefined rules. Firewalls generally keep a barrier

between a restriction, secure internal network and other

outside networks, such as the Internet, that is presumed

not to be safe or reliable. They can be characterized as

either hardware or software firewalls.

RESTful API’s: They are used for communication between

the SDN and firewall. REST stands for REpresentational

State Transfer. It means when a RESTful API is called, the

server will transfer to the Application (client) a

representation of the requested resource. RESTful API’s

Uses HTTP requests such as GET, PUT, HEAD, POST and

DELETE data. They use GET to retrieve a resource; PUT to

change the state of or update a resource, POST to create

that resource; and DELETE to remove it. Binding to a

service through an API is a matter of controlling how the

URLs are decoded which can be used for communication

between the firewall and SDN controller.

OpenFlow : It is a communication protocol that allows a

server to tell networks switches where to send packets.

The OpenFlow protocol is used to differentiate between

an OpenFlow controller and OpenFlow switches. An

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1919

OpenFlow controller instructs the OpenFlow switch on

how to manage incoming data packets and open interfaces

for remotely controlling the forwarding tables in network

switches, routers, and access points. OpenFlow is not an

SDN and it is not the only protocol which can be used for

communication within a software defined networking

environment. However in current condition OpenFlow has

been standardized and most widely used in these

applications. OpenFlow is an open API. It has many

similarities to the x86 instruction set for the networks. As

such OpenFlow for software defined networks provides an

open interface to networking nodes including routers,

switches and the like. It enables visibility and openness in

the network. The OpenFlow Switch data flow consists of a

Flow Table. The OpenFlow controller maintains the

communication channels to the OpenFlow switches and

maintains the local state graph of the switches and

exposes the RESTful API’s to the Applications. SDN

OpenFlow is based on an Ethernet switch, with an internal

flow-table, and a standardized interface to add and

remove flow entries.

2. SYSTEM ARCHITECTURE

The system architecture is given in Figure 3.1. Every block

present is explained in this section

Fig 2.1 System Architecture of SDN

The three major parts of the frame of SDN are switch,

controller and the interface needed for communication.

2.1 Switch

Switches are taken as hardware that can be operated via

open interface. An Open-Flow switch has three parts, flow

table, set of command and secure channel. The flow table

stores the data regarding the flow entry for packets and

lookup and forwarding. These flow entries consist of

match fields, counters and sets of instructions that handle

the matching of packets. On arrival of the packets at the

switch, the packet header is being extracted and matched

with the matching fields. When a matching entry is found,

an appropriate set of instructions is applied and in case of

a failed match the action will be taken according to the

table miss flow entry. For eg. Dropping packets, continue

the match process on the next flow table.

2.2 Controller

The control plane is the main part of the SDN architecture,

so it is very important to give exact concern towards the

design parameter of the controller. Controller provides a

programming interface to the network. Multiple

controllers are being used to hold the backup of data of the

controller that controls the whole network. According to

the experiments performed, the controller Open Network

Operating System has good performance on clusters,

linkup and throughput whereas Open-Daylight works well

with topology discovery and stability. A controller is

designed in such a way that it can handle upto 6.000.000

flows/sec5.

2.3 Interface for communication

Various protocols are used to communicate between the

control plane and the data plane. RESTful API’s are used

for communication between the Firewall application and

SDN Controller.

3. APPROACH

Centralized approach is being used in the SDN to solve the

problem that is observed in traditional networks. It

provides the programmable platform to design the

network. The SDN architecture differs from other local

architecture in terms of the carrier grade network. The

separation of the plane makes it quite easy to implement

new protocols and applications. The three major

components of the frame of SDN are switch, controller and

the interface needed for communication and packet

transfer.

There were two approaches considered in implementing

firewall: a) pre-installing the rules onto the switch’s flow

table and b) handling the packets directly as they come in.

We chose to handle the incoming packets directly because

of the flexibility in management. One downside of this

method is that too many packets can be delivered to the

controller and take up a large portion of its resources; it is

a lot more efficient to block unnecessary packets at the

switch level. To cope with this issue, the user can also

decide to install a 'deny' flow modification on the switch to

continue dropping similar packets for a certain time

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1920

period. The logic of this firewall is as follows: each packet

headers are checked against the firewall rule from highest

to lowest priority, and performs specified action once

matching fields are found in the rule. Any unmatched

packets are dropped. Installing firewall rules are possible

from an external entity through a text-based user

interface.

4. IMPLEMENTATION

The implementation details are given in this section as,

there were two tactics considered in implementing the

firewall, In order to test the workability of this firewall, the

following programs were used:

Virtual Box - offers a background for virtual networks to

be formed.

Mininet - provides virtual SDN network topology.

POX - SDN controller.

The key technique used within software defined

networking is to structure the network architecture so

that the application layer, control layer and the

infrastructure layers are separated and individually

definable. Finally a simulated network is built on a mininet

network simulator and random network traffic is

generated from hosts to the servers. The firewall is able to

identify any suspicious activity & alert the concerned

parties.

4.1 Algorithm / Methodology/Techniques

We will create an SDN network for our project using an

emulation tool called Mininet. So first we downloaded the

oracle virtual box in windows 7 or 10. Then we

downloaded the mininet tool and imported into the virtual

box to run it. We configured the network settings of the

mininet according to our project and then we ran we will

create an SDN network for our project using an emulation

tool called Mininet. So first we downloaded the code for

the pox controller. Miniedit is used which was run to show

the network topology consisting of hosts and switches and

also the controller. A dialog box in miniedit can be used to

specify the ip address of hosts that we want to connect to

or block the host from connecting to. The pox console and

the mininet can be connected and hence we can efficiently

monitor the traffic flow and also see it coming from

different hosts. A virtual switch will be used in the mininet

for connection between the host and the controller.

4.2 SDN Firewall Commands :

[A] Add:

This command takes in the parameters and adds them to

the list of rules in a dictionary form. This command has

following functions:

• If a repeated name appears, it warns the user and doesn't

add.

• The rule list is in the order of priority, and users can

decide priority for each rule. If the user doesn’t specify a

priority, it is added to the end of the list.

• Timeout is an integer in units of seconds.

• Priority is optional. The highest priority that users can

assign is one. When the indicated priority is already taken,

the new rule gets placed at that priority and the rest is

pushed back one priority. This command has following

syntax: input in the form of (name, match, action, priority

(optional)

• Anything non-integer is added with the quotation marks.

• When putting multiple match fields, all the match pair

need to be put inside a parenthesis

• Four options for the action field are: ‘allow’, ‘deny’,

(‘deny’, timeout): when idle & hard have equal timeout.

This installs the rule to switch that rejects all similar

packets for the time specified. (‘deny’, idle timeout, hard

timeout).

[B] Delete:

This command takes the rule name as an input, and

deletes from the rule. This command has following

functions:

• If the indicated name doesn't exist, it warns the user.

• The name is case-sensitive, and does not need to be in

quotation marks.

[C] Show:

These commands show the name of the rules. This

command has following functions:

• The names of the rules are listed in the order of priority

this command has following syntax:

• No additional input necessary.

[D] ShowComplete:

This command Shows complete entry of the rules. This

command has following functions:

• List each rule in the order of priority, name, match, allow

this command has following syntax:

• No additional input necessary.

[E] SwitchPro:

This command takes name and new priority as input, and

switches list order. This command has following functions:

• The indicated rule gets placed at the newly assigned

priority, and the rest of the rules gets pushed back one.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1921

• Input should be in order of name, priority separated by a

comma.

• Name does not need to be in quotation marks.

[F] Set Timeout:

This command sets a general timeout to drop similar

packets in the future. This command has following

functions:

• Checks that inputs are valid integers.

• Input in the order of idle timeout, hard timeout

separated by a comma.

5. EXPERIMENTAL RESULTS

Mininet is a network emulator that enables the creation of

a network of virtual hosts, switches, controllers, and links.

Mininet creates a network with hosts. It runs on one

terminal. In another terminal, the POX controller is

executed, which works as the firewall and filters the traffic

as per the rules specified in it.

An OpenFlow-enabled switch runs at the gateway

connecting a network under protection and the rest of the

network. The firewall controller can be potentially hosted

anywhere in the network. The security rules are specified

in the flow table which is maintained in both the

OpenFlow-enabled switch and the firewall controller. An

entry in the flow table specifies the security rule for

handing a traffic flow.

The switch acts as a simple packet-pusher based on the

security rules defined in its flow table. The firewall

controller makes use of its flow table to keep track of the

control decisions on traffic flows. A designated

communication channel is maintained between the switch

and the firewall controller. Through this channel, the

switch sends the information about the unidentified traffic

flows to the controller for inspection, and the controller

sends control decisions to the switch. When the switch

cannot match a packet to a rule in its flow table, it sends

the packet to the controller for inspection. After

inspection, the controller informs the switch about its

control action on a flow, and it also memorizes the control

decisions in its flow table. The switch can also update the

controller about the statistics. First, on the setup phase of

the firewall, the controller will send OpenFlow commands

to install firewall rules. Each firewall rule is a flow entry

consisting of source MAC address matching field,

destination MAC address matching field, and the action set

to DROP action. After the setup phase, every packet going

through the switches will be matched against flow table

entries (including the firewall rules).

If the packet matches one of the firewall rules (same

source and destination MAC addresses), the switch will

drop the packet immediately. When the switch cannot

match a packet to a rule in its flow table, it sends the

packet to the controller for inspection. After inspection,

the controller informs the switch about its control action

on a flow, and it also memorizes the control decisions in

its flow table. The switch can also update the controller

about the statistics. The rule processing module translates

the rule specification to a collection of rule data structures,

matches traffic flows to rules, and maintains the structure

of the flow table. The configuration module translates the

user-specified configuration into a data structure that is

recognizable by the core module. By this flow table, traffic

will be reduced and input flow will reduce the DDoS attack

Therefore, every hardware device in the network will

behave as a firewall and filter out unwanted traffic. It can

be said that the flow concept is the backbone of OpenFlow

and SDN.

Fig 5.1 Packet dropped by Firewall in SDN

Fig 5.2 Execution of Firewall Rules

In the above figures, the firewall's rules are tested with the

pingall command, which runs on one terminal to check the

connectivity with all the hosts of the network. The result

indicates that one host cannot connect with the other,

which can be added as a drop packet rule in the firewall.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1922

6. Requirement Analysis

The Requirement details are given in the section given

below:

6.1 Software

The experiment setup is carried out on a computer system

which has the following software specifications as given in

Table 5.1

Table 5.1 Software Requirements

6.2 Hardware

The experiment setup is carried out on a computer system

which has the following hardware specifications as given

in Table 5.2

Table 5.2 Hardware Requirements

7. CONCLUSION

The popularity of SDN in the IT world today is

demonstrated by the numerous startups that proliferate in

this area. Though there exist outstanding firewalls in the

market, it is quite costly for companies to install numerous

firewall hardware across the entire network to preserve

high security. Also as mentioned earlier, replacing a

firewall is a serious pain – from physically replacing the

firewall, reconfiguring each device related to the firewall

to troubleshooting. Besides the inconvenience, one wrong

turn can put the entire network at risk. Thus, SDN is not

only revolutionary in making the control flexible and

manageable, but also for firewalls to achieve

programmability by separating the firewall hardware and

the control software. An OpenFlow-based firewall with a

straightforward UI that integrates priority switching can

bring another wave of innovation in the Internet world.

8. FUTURE SCOPE

The main goal is to draw some reasonable answers. Can

we (and how to) leverage the new features provided by

SDN to enhance network security?. Based on research

paper and in-depth analysis of SDN features and their

applications discussed, we claim that SDN can clearly

enhance network security functions in the following

points. First, its ability of controlling network flows

dynamically can provide more flexible deployments of

security functions on a network because it allows us to

enable security functions on SDN-enabled network devices

without installing additional devices (e.g., middleboxes).

Second, its network-wide visibility can realize network-

wide monitoring in terms of security. This ability provides

a holistic view to us, and thus we can comprehend

network attacks widely distributed in the Internet (e.g.,

network-wide scanning or DDoS) much more efficiently

than legacy network monitoring systems. Third, its

programmability helps us develop more advanced

network security functions. We can (relatively) easily

implement a prototype security system without putting

much effort. As such, SDN features can be leveraged in

accelerating the development of new and advanced

network security functions. We will introduce the SDN

technology and systematically and investigate its usage for

security.

Currently, this design only looks at the packet header

fields to determine the action. Perhaps, future developers

can further improve this logic by incorporating SDN

capacities to improve security by observing the entire

network flow and efficiently block the network attacks in

the early stage without having to perform deep packet

inspection.

9. ACKNOWLEDGEMENT

It is our privilege to express our sincerest regards to our
supervisor Prof. K.S.Charumati for the valuable inputs,
able guidance, encouragement, whole-hearted cooperation
and constructive criticism throughout the duration of this
work. We deeply express our sincere thanks to our Head
of the Department Dr. Sharvari Govilkar and our Principal
Dr. Sandeep M. Joshi for encouraging and allowing us to
present this work.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1923

REFERENCES

1. M. Suh, S. H. Park, B. Lee, and S. Yang, “Building
firewall over the software-defined network
controller,” in Proceedings of the 16th
International Conference on Advanced
Communication Technology: Content Centric

2. Network Innovation!, ICACT 2014,pp. 744–748,
Republic of Korea, February 2014.

3. J.G.V. Pena andW.E.Yu, “Development of a
distributed firewall using software defined
networking technology,” in Proceedings of the 4th
IEEE International Conference on Information
Science and Technology, ICIST 2014, pp. 449–452,
China, April 2014.

4. T. Javid, T. Riaz, and A. Rasheed, “Layer 2 firewall
for software defined network,” in Proceedings of
the Conference on Information Assurance and
Cyber Security, CIACS 2014, pp. 39–42, Pakistan,
June 2014.

5. K. Kaur, K. Kumar, J. Singh, and N. S. Ghumman,
“Programmable firewall using Software Defined

Networking,” in Proceedings of the 2nd
International Conference on Computing for
Sustainable Global Development,

6. INDIACom 2015, pp. 2125–2129, India, March
2015.

7. T. V. Tran and H. Ahn, “A network topology-aware
selectively distributed firewall control in sdn,” in
Proceedings of the International Conference on
Information and Communication Technology
Convergence (ICTC), pp. 89–94, IEEE, Oct 2015.

8. B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K.
Obraczka, and T. Turletti, “A survey of software-
defined networking: past, present, and future of
programmable networks,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634,
2014.

9. H. Farhady, H. Lee, and A. Nakao, “Software-
defined networking:A survey,” Computer
Networks, vol. 81, pp. 79–95, 2015.

10. opennetworking.org website
11. www.brianlinkletter.com website
12. Opensourceforu.com website
13. openflow.stanford.ed

