
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 297

Study and Assessment of Reverse Engineering Tool

Prof. Ketki Tiwari

Assistant Professor, Dept. of IT, Acropolis Institute of Tech and Research, MP, India
---***--
Abstract - The conception of legacy codes is difficult to
understand. Numerous commercial reengineering tools are
widely available that have different working styles, and are
equipped with their built-in capabilities and shortcomings.
This paper presented a brief overview of a Reverse engineering
concept by studying various existing reverse engineering tools.
Paper consist of a study and assessment of various available
tools in this field such as Imagix 4D, Columbus, Rigi, Solidfx
and e.t.c..

Key Words: Reverse Engineering, Imagix 4D, Columbus, Rigi,
Bahuaus, Solidfx, etc.

1. INTRODUCTION

 Reverse engineering concept arise from the problem of
legacy system. Legacy system is an old method, technology,
computer system, or application program, or being a
previous or out of date computer system, yet still in use.
Legacy system migration encircle many research areas. A
single migration project could, quite accurately, address the
areas of reverse engineering, business re-engineering,
translation and schema mapping, data transformation,
application development etc.

 Reverse engineering is a process of restoring the design,
requirement specifications and functions of a product from
its code analysis. It forms a program database and
generates information from this and also produce the
necessary documents for a legacy system. It allows
developers and maintainers to do things easily and saves
money and time both. The Reverse engineering tools help
software engineers to analyzing and understanding a
complex software system (fig 1.1).

Fig 1.1 Reverse and Forward Engineering Concept

Reverse engineering is influenced by many things
like Interfacing, Military or commercial purpose, to enhance
documentation short coming, software modernization,
product security analysis, bug fixing, creation of unlicensed,
unapproved, duplicated, academic or learning purpose,
competitive technical intelligence, saving money. For
performing reverse engineering on a system many reverse
engineering tools are available in the market.

 In this paper we study various existing reverse engineering
tools. The study of tool will help the developers to improve
their mechanism of tools.

2. STUDY OF TOOLS

The reverse engineering community has presented
many reverse engineering tools— including Bauhaus,
Columbus, SNIFF++, Code Crawler, GUPRO, SolidX, Rigi,
Defacto and IMAGIX 4D, Enterprise Architect, CPPX etc. We
can divide tools on the basis of language, in which they can
execute reverse engineering task. Basically, many of these
reverse engineering tools have similar software
architecture, including several components with standard
functionalities: extractor, analyzer, visualizer, and
repository. The extractor, analyzer, and visualizer
components emulate the reverse engineering exercise of
extraction, analysis, and synthesis, respectively. [1] We
study some recognized reverse engineering tools each of
which perform distinct category of reverse engineering:

Imagix 4D: Imagix 4D developed to present a solution for
C, C++ and Java developers, It helps software that is huge,
complex, obscure or old, by automating the examination
and browsing of your code. You're adequate to achieve
faster and more specific program understanding by more
precise representation generated by the tool. This resulting
in less software defects while requiring less investment of
engineering resources in development process. Tool
presents this crucial information on software in a 3D-
graphical format which allows the user to quickly focus on
particular areas of interest. [2]. Imagix 4D, alike Refine/C,
present a superior parser and the generation of projects is
quite supported by the tool (e.g. project solution by file,
directory, makefile, reparse and incremental parsing, etc.).

The tool has a fine user interface and is very easy to use.
It provides the most number of views of all the classified
tools and it owns the best set of supporting capabilities (e.g.
search engine, unified editor with highlighting and immense
browsing capabilities, etc.). The generated views were
sometimes too large and complex to be of real use, but
because of a lot of efficiency to manipulate them (e.g. filters,

https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Application_software

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 298

scopes, groups, etc.) they could be good tailored to the task
or issue at hand. Queries for the source code that are
provided tested very useful (e.g. to comprehend the
program faster).

Another feature that is only provided by Imagix 4D is the
automatic generation of documentation from the source
code. It provides generating HTML documentation which
can then be browsed. Document generation is not so good
in Imagix 4D. Two major features that are missing are a way
to extend the tool and to generate graphical views that are
also useful in printed form. [2]. The capability of Imagix 4D
to produce decision density and complexity metrics for a
large code was found to be useful in getting to learn how
much reengineering is required. But with all this
advantages Imagix 4D offered limitations in dynamic
visualizations, flow chart separation (large code) and
parsing loops.[3].

 Columbus: Columbus is capable to analyze large C/C++
code and scan to extract facts from them. Columbus is a
frame work tool which provide project handling, data
extraction, data representation, data storage, modification
and visualization. The parsing of the provided source code
via the C/C++ extractor plug-in of Columbus, which invokes
a separate program called CAN (C++ Analyzer). CAN is a
command line application for analyzing C/C++ code. This
provides its integration into the client’s make files and other
configuration files thus accelerate automated execution in
parallel with the formal software build process. In addition
CAN accept one entire translation unit at a time (a
preprocessed source file) and for files that are not
preprocessed a preprocessor will be invoked. The clear
results of CAN are the internal representation files, which
are the binary saves of the internal representations built up
by CAN during extraction. These files will be merged
together by CANLink, the command line linker for CAN. CAN
is able to produce templates at source level, which is
capable using a two-pass technique in program analysis.
The first pass only identifies the language constructs in
connection with the templates (like a "fuzzy" parser) and
instantiates them. The second pass then executes the
complete analysis of the source code and creates its internal
representation.[4].

CAN uphold the precompiled headers technique as well,
which is widely used by compiler systems in order to cut
down compilation time. This technique is useful especially
in case of large projects. The parser is fault-tolerant (it has
the capability to parse partial, syntactically incorrect source
code), which means that it can carry on with the analysis
from the next parsable statement after the failure [5]

 Bauhaus: Bauhaus provides a wide range of features such
as source code metrics, pointer analysis, side-effect analysis,
data flow analysis, program slicing, code duplication
methods, static tracing, query methods, source code
navigation and visualization, object recovery, re-
modularization, architecture recovery techniques, Bauhaus
allows you resolve the pointers statically through an
automatic analysis. For huge programs, it is so difficult to

trace all the function calls and not to get lost. Bauhaus
discover all side effects statically through an automatic
analysis. Bauhaus analyze Uncover Side Effects, Control and
Data Dependencies, Harmless pointers, Detect Code Clones,
Measure Code Attributes, Lines-of-Code-per-Function
Metric, Cyclomatic Complexity Metric, Nesting Metric,
Detect Dead Functions, discover uninitialized variables,
Static object tracing, Component mining.[6].

Rigi: Rigi is an interactive, visual and public domain
tool Developed at the University of Victoria (Hausi A.
Muller) under Rigi Research Project. It is designed in such a
way to help you understand and re- document your
software code. It uses parsers to read the source code of the
subject software and develop a graph of extracted artifacts
such as procedures, variables, calls, and data accesses. To
control the complexity of the graph, an editor allows you to
automatically or manually collapse related artifacts into
subsystems.[2].

The initial phase of the reverse engineering process is
the extraction of software artifacts, is language-dependent
and necessarily involves parsing the source code and
storing the artifacts in a repository. Rigi parsing system
presently supports the programming languages C, COBOL,
and a proprietary IBM system-programming language. It
uses GRAS, a database specifically designed to represent
graph structures, as a central depository to store the parsed
artifacts. The software engineer can then modify the stored
artifacts through an interactive graph editor. Primary
resource flow graph generated by parsing system is static
and uncommon. Rigi has a multiple pre-defined models
(e.g., for C and C++) and containing parsers that can extract
information from the subject system and store this
information in Rigi’s exchange format. [7].

Rigi's fact extractors target source code only. The C and
Cobol parsers are based on Lex and Yacc. Also exists a C++
parser (vacpp parse) that is created on top of IBM's Visual
Age compiler. There also exists fact extractors developed by
other groups that support Rigi (e.g., Columbus's C/C++
parser and SHriMP's Java extractor).[7].

Enterprise Architect: EA is a extensible, multi-user,
visual tool with a great feature set. Enterprise Architect
presents reverse engineering support for a number of well
known programming languages. However, the language
that you are using is not supported, then you can write your
own grammar for it, using the default Grammar Editor. You
can then integrate the grammar into an MDG technology to
allow both reverse engineering and code synchronization
support for your target language. Enterprise Architect uses
a deviation of Backus–Naur Form (nBNF) to incorporate
processing instructions, the execution of which returns
structured information from the parsed results in the form
of an Abstract Syntax Tree (AST), which is used to produce
a UML representation.

 Solidfx: It present an integrated reverse-engineering
environment (IRE) for C and C++. SolidFX was particularly
designed to support code parsing, fact extraction, metric

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 299

computation, and interactive visual analysis of the output in
the same way IDEs and design tools provide for the forward
engineering pipeline. While the designing of SolidFX, we
adapted and extended various existing code analysis and
data visualization methods to render them scalable for
handling code bases of millions of lines. It also used in
various types of analyses of real-world industrial code
bases, including maintainability and modularity
assessments, detection of coding patterns, and complexity
analyses.[8].

SolidFX IRE presents a set of interactive data
visualizations, or views. These views are used as input and
output to the reverse engineering operations: Users can
select elements in the visualization and pass them 150 A.
Telea et al. / Electronic Notes in Theoretical Computer
Science 233 (2009) 143–159 as input to several operations,
such as queries or metric engines, whose results can further
serve as inputs for the views. The relative great success of
SolidFX in several current projects seems to be due to the
huge integration of its functions, provides under a uniform
interface, and the possibility to execute complex analysis
with minimal (or no) programming.[8].

 SolidSX: It is an integrated tool for visual analysis of huge
and complex software systems. It unify static code analysis
(parsing and metric computation) and multiple linked
views such as treemaps, table lenses, and hierarchical edge
bundles in a specific environment, thereby reduce the work
of software developers concerned in correlating various
structure and metric aspects in understanding large
software projects. It can be used fully standalone on C, C++,
.NET/c#, and Java code bases, but is also incorporate in the
Visual Studio IDE. The latter links code editors and
visualization in both ways by mouse clicks, and is one of the
first (and few) examples of truly unified visual analytics
solutions in software development. The another feature of
solidsx is a simple Python scripting interface which
provides integration in other IDEs or toolchains, such as
Eclipse, KDevelop, or Qt Creator. It was used in various
industrial reverse-engineering and program

comprehension projects.[9].

3. ASSESSMENT CRITERIA

Assessments or a judgment requires criteria or
parameters on which we can perform this task. While doing
literature review we got some authors describe criteria for
the assessment of the reverse engineering tool. We took
Berndt Bellay and Harald Galldefined evaluation criteria for
our assessment drive which is the best suitable for our goal.
It divides the criteria in four main categories: analysis,
representation, editing/browsing and general capabilities
to evaluate the capabilities of the above tools [Bellay and
Gall, 1998].

Analysis: The parser is the main subsystem of each
reverse engineering tool. The output of the parsed source
code, i.e. the description from which all the views are
created, depends on the capabilities of the parser. Portion of
the source code that are not parsed or parsed incorrectly

will affect all the produced views. [2] So in these criteria we
described about the parser ability to parse the source code.

Representation or Import /Export: It is the ability
of importing available projects and exporting to several
formats of presentation. Representations are categories into
textual and graphical reports, and properties of these
reports, and are evaluated based on their usability. These
are described as follows:

Textual (tabular, formatted, etc.): It presents a list
with different textual reports, which are assessed for each
tool on their operation and completeness. Graphical (2-, 3-
dimensional): It presents a list with different graphical
reports, which are assessed for each tool on their usability
and completeness.[2].

Editing/browsing: The editing/browsing capabilities
are important because the user usually switches the
abstraction level from the generated visualization to the
actual source code. The text editor/browser should
therefore present means to help browsing the source code.
[2]

General capabilities: common capabilities span a
huge range from supported platforms to online-help. User
interface, extensibility, storing capability, multi-user
support, among other things [2]

4. CONCLUSION

 Reverse engineering is very prominent area of research.
Most of the organizations take concern in this field only
because it save time, manpower and money. In this paper
we evaluated features and capabilities of some
distinguished existing reverse engineering tools such as
Imagix 4D, Rigi, Bahuas, Columbus, Enterprise Architect,
Solidfx and solidsx. These tools are very useful for the
purposes of software maintenance, reengineering, re-
documentation and code reuse. They present designer,
programmer and maintainers many software quality
capabilities for their work and for documenting their
project. These include analyzing automatically the source
code of a software system, representing the structure of this
system at higher levels of abstraction such as call graphs,
flow charts, control flow and class diagram. They also
provide code parser, storing ability, representation features
in large lines of code.

REFERENCES

[1] Holger m. Kienle, hausi a. Muller,”The Tools Perspective

on Software Reverse Engineering Requirements,
Construction, and Evaluation” Advances in Computers,
December 2010.

[2] Berndt Bellay, Harald Gall, “An Evaluation of reverse
engineering tool capabilities” Journal of Software
Maintenance: Research and Practice,1998.

[3] Rashmi Yadav, Ravindra Patel and Abhay Kothari,”
Critical evaluation of reverse engineering tool Imagix
4D!” SpringerPlus (2016) 5:2111.

[4] Rudolf Ferencl, Arpad Beszedes, Mikko Tarkiainen and
Tibor Gyimothy, “Columbus Reverse Engineering Tool

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 300

and Schema for C++”, International Conference on
Software Maintenance, IEEE 2002.

[5] Rudolf Ferencl, Arpad Beszedes, Mikko Tarkiainen and
Tibor Gyimothy, “Fact Extraction and Code Auditing
with Columbus and SourceAudit”, Proceedings of the
20th IEEE International Conference of Software
Maintenance (ICSM’04).

[6] Aoun Raza, Gunther Vogel, and Erhard Pl¨odereder,
“Bauhaus – a Tool Suite for Program Analysis and
Reverse Engineering”, International Conference on
Reliable Software Technologies Ada-Europe 2006.

[7] Holger M. Kienle, Hausi A. Muller,” Rigi—An
environment for software reverse engineering,
exploration, visualization, and re-documentation”
Science of Computer Programming 75 (2010) 247–263
elsevier.

[8] Alexandru Telea, Heorhiy Byelas, “A Framework for
Reverse Engineering Large C++ Code Bases”, Electronic
Notes in Theoretical Computer Science 233 (2009)
Elsevier.

[9] D. Reniers, L. Voinea1 and A. Telea,” SolidSX: A Visual
Analysis Tool for Software Maintenance”, Poster
Abstracts at Eurographics/ IEEE-VGTC Symposium on
Visualization (2010).

[10] Rashmi Yadav, Ravindra Patel and Abhay Kothari,”
Critical evaluation of reverse engineering tool Imagix
4D!” SpringerPlus (2016) 5:2111.

[11] Michele Lanza, “CodeCrawler — Lessons Learned in
Building a Software Visualization Tool”, Seventh
European Conference on Software Maintenance and
Reengineering, 2003. Proceedings., IEEE 2003.

[12] M.A.D. Storeyyz K. Wongy P. Fongz D. Hooperz K.
Hopkinsz H.A. Muller,” On Designing an Experiment to
Evaluate a Reverse Engineering Tool”, Proceedings of
WCRE '96: 4rd Working Conference on Reverse
Engineering,IEEE.

https://ieeexplore.ieee.org/xpl/conhome/8357/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8357/proceeding
https://link.springer.com/conference/adaeurope
https://link.springer.com/conference/adaeurope
https://link.springer.com/book/10.1007/11767077
https://ieeexplore.ieee.org/xpl/conhome/8481/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8481/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8481/proceeding

