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Abstract - In this paper, an innovative method is presented for 
offline handwritten character detection using deep neural 
networks. In today’s world, it has become easier to train deep 
neural networks because of availability of huge amount of 
data and various Algorithmic innovations which are taking 
place. Handwritten Text Recognition (HTR) is an automatic 
way to transcribe documents by a computer. There are two 
main approaches for HTR, namely hidden Markov models and 
Artificial Neural Networks (ANNs). The proposed HTR system 
is based on ANNs. Preprocessing methods enhance the input 
images and therefore simplify the problem for the classifier. 
These methods include contrast normalization as well as data 
augmentation to increase the size of the dataset. The classifier 
has Convolutional Neural Network (CNN) layers to extract 
features from the input image and Recurrent Neural Network 
(RNN) layers to propagate information through the image. 
The RNN outputs a matrix which contains a probability 
distribution over the characters at each image position. 
Decoding this matrix by the connectionist temporal 
classification operation yields the final text.  
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1. INTRODUCTION 
 
Handwritten Text Recognition (HTR) is the task of 

transcribing handwritten text into digital text. It is a 

technology that is much needed in this world as of today. 

Before proper implementation of this technology we have 

relied on writing texts with our own hands which can result 

in errors. It’s difficult to store and access physical data with 

efficiency. Manual labor is required in order to maintain 

proper organization of the data. Throughout history, there 

has been severe loss of data because of the traditional 

method of storing data. Modern day technology is letting 

people store the data over machines, where the storage, 

organization and accessing of data is relatively easier. [2] 

Adopting the use of Handwritten Text Recognition software, 

it’s easier to store and access data that was traditionally 

stored. Furthermore, it provides more security to the data. 

Handwriting recognition is a challenging task because of 

many reasons. The primary reason is that different people 

have different styles of writing. The secondary reason is 

there are lot of characters like Capital letters, Small letters, 

Digits and Special symbols. Thus a large dataset is required 

to train a near-accurate neural network model. Handwritten 

Text Recognition (HTR) is divided into online and offline 

recognition. Online recognition is performed while the text 

to be recognized is written (e.g. by a pressure sensitivity 

device), therefore geometric and temporal information is 

available. Offline recognition, on the other hand, is 

performed after the text has been written. The text is 

captured (e.g. by a scanner) and the resulting images are 

processed. 

To build the Handwritten Text Recognition model (HTR), the 

neural network is trained on word-images from the IAM 

dataset. The proposed system makes use of Artificial Neural 

Networks (ANNs). Multiple Convolutional Neural Network 

(CNN) layers are trained to extract relevant features from the 

input image. These layers output a 1D or 2D feature map (or 

sequence) which is handed over to the Recurrent Neural 

Network (RNN) layers. The RNN propagates information 

through the sequence. Afterwards, the output of the RNN is 

mapped onto a matrix which contains a score for each 

character per sequence element. As the ANN is trained using 

a specific coding scheme, a decoding algorithm must be 

applied to the RNN output to get the final text. Training and 

decoding from this matrix is done by the Connectionist 

Temporal Classification (CTC) operation. 

2. RESEARCH METHODOLGY 
 
2.1. Description of the dataset 

 

To build the Handwritten Text Recognition model (HTR), the 

neural network is trained on word-images from the IAM 

dataset. The IAM Handwriting Database contains forms of 

handwritten English text which can be used to train and test 

handwritten text recognizers and to perform writer 

identification and verification experiments. The database 

contains forms of unconstrained handwritten text, which 

were scanned at a resolution of 300dpi and saved as PNG 

images with 256 gray levels. 

The IAM Handwriting Database 3.0 is structured as follows: 
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 657 writers contributed samples of their handwriting 

 1'539 pages of scanned text 

 5'685 isolated and labeled sentences 

 13'353 isolated and labeled text lines 

 115'320 isolated and labeled words 

The words have been extracted from pages of scanned text 

using an automatic segmentation scheme and were verified 

manually. 

 

Fig 1: Dataset 

2.2. Data Preprocessing 
 

The input is a gray-value image of size 128×32. Usually, the 

images from the dataset do not have exactly this size, 

therefore resize it (without distortion) until it either has a 

width of 128 or a height of 32. Then, copy the image into a 

(white) target image of size 128×32. This process is shown in 

Figure 2. Finally, normalize the gray-values of the image 

which simplifies the task for the NN. Normalization is done to 

change the range of pixel intensity values.  

 

Data augmentation is a strategy to significantly increase the 

diversity of data available for training models, without 

actually collecting new data. Data augmentation techniques 

such as cropping, padding, and horizontal flipping are 

commonly used to train large neural networks. Data 

augmentation can easily be integrated by copying the image 

to random positions instead of aligning it to the left or by 

randomly resizing the image.  

 

 
Fig 2: Left: an image from the dataset with an arbitrary 

size. It is called to fit the target image of size 128 x 32, the 

empty part of the target image is filled with white color. 

The model not only learns how to read text, but it also learns 

how the samples look like. There are some noticeable 

patterns in the IAM dataset as shown in Figure 3: 

 Images have high contrast 
 Words are tightly cropped 
 Bold writing style 

 

Fig 3: A sample from the IAM dataset 

If an image with a very different style is feed to the model, the 

model might predict a bad result. The reason is that the 

model has never seen images like this: 

 Low-contrast 
 Much space around the word 
 Lines very thin 

Hence, the input image is pre-processed such that it looks like 

a sample from IAM (see Figure 4). First, crop the image: The 

model still recognizes “.”. Then, increase the contrast: Now, 

the model gives a much better result: “tello”. This is almost 

correct. If the lines are thickened by applying a morphological 

operation, the model is finally able to recognize the correct 

text: “Hello”. 

 

Fig 4: Pre-processing steps and the recognized text for 

each of them 
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2.3. Implementation 

2.3.1. Methodology 

The end-to-end trainable Artificial Neural Network (ANN) 

contains 5 convolutional layers and 2 layers of bidirectional 

LSTM units with 256 hidden cells. The input images only 

contain single words. The input to the ANN is a gray-value 

image containing text. A stack of convolutional layers maps 

the input image onto feature maps. The output of the final 

layer of the CNN can be regarded as a sequence of length T 

with F features. Information is then propagated along this 

sequence with a stack of RNNs. [3] The RNNs map the 

sequence to another sequence of same length T, assigning 

probabilities to each of the C different classes. Finding the 

most probable labeling in this C x T sized matrix is called 

decoding and is done with a CTC output layer. While training, 

the CTC loss is used to calculate a loss value for a training batch 

which is then backpropagated to the output layer of the RNN. 

The usage of the CTC operation is twofold: it serves as a loss 

function and as a decoding function. 

 

Fig 5: The network architecture called Convolutional and 

Recurrent Neural Network (CRNN). It uses CNN layers, 

followed by LSTM layers and a final CTC layer. 

2.3.2. Convolutional Neural Network 

A convolutional neural network consists of an input and an 

output layer, as well as multiple hidden layers. The hidden 

layers of a CNN typically consist of a series of convolutional 

layers that convolve with a multiplication or other dot 

product. The activation function is commonly a RELU layer, 

and is subsequently followed by additional convolutions such 

as pooling layers, fully connected layers and normalization 

layers, referred to as hidden layers because their inputs and 

outputs are masked by the activation function and final 

convolution. The final convolution, in turn, often involves 

backpropagation in order to more accurately weight the end 

product. 

 
Fig 6: Left: Network diagram of a convolutional layer. An image 

patch x is convolved by a kernel k. As a non-linearity the RELU 

function is applied. Finally, pooling generates a summary 

statistic for small regions. Middle: plot of the RELU function. 

Right: max-pooling of a 2 × 2 region. 

2.3.3. Long Short-Term Memory (LSTM) Neural 
Network 

Long short-term memory (LSTM) is an artificial recurrent 

neural network (RNN) used in the field of deep learning. 

Unlike standard feed-forward neural networks, LSTM has 

feedback connections. It can not only process single data 

points (such as images), but also entire sequences of data 

(such as speech or video). A common LSTM unit is composed 

of a cell, an input gate, an output gate and a forget gate. The 

cell remembers values over arbitrary time intervals and the 

three gates regulate the flow of information into and out of 

the cell. LSTM networks are well-suited 

to classifying, processing and making predictions based 

on time series data, since there can be lags of unknown 

duration between important events in a time series. LSTMs 

were developed to deal with the exploding and vanishing 

gradient problems that can be encountered when training 

traditional RNNs.  

 

Fig 7: Architecture of Long Short-Term Memory (LSTM) 

Neural Network 

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Classification_in_machine_learning
https://en.wikipedia.org/wiki/Computer_data_processing
https://en.wikipedia.org/wiki/Predict
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
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2.3.4. Connectionist Temporal Classification (CTC) 
Decoder 

Connectionist temporal classification (CTC) is a type of 

neural network to produce output using associated scoring 

function, for training recurrent neural networks (RNNs) such 

as LSTM networks to tackle sequence problems where the 

timing is variable. It can be used for tasks like on-

line handwriting recognition or recognizing phonemes in 

speech audio. 

 

The NN for such use-cases usually consists of convolutional 

layers (CNN) to extract a sequence of features and recurrent 

layers (RNN) to propagate information through this 

sequence. It outputs character-scores for each sequence-

element, which simply is represented by a matrix. Now, there 

are two things we want to do with this matrix: 

1. train: calculate the loss value to train the NN 

2. infer: decode the matrix to get the text contained in the 
input image 

Both tasks are achieved by the CTC operation. The NN-
training will be guided by the CTC loss function. We only feed 
the output matrix of the NN and the corresponding ground-
truth (GT) text to the CTC loss function. It tries all possible 
alignments of the GT text in the image and takes the sum of 
all scores. This way, the score of a GT text is high if the sum 
over the alignment-scores has a high value. There was the 
issue of how to encode duplicate characters.  It is solved by 
introducing a pseudo-character (called blank, not a white-
space character).  

There are the following different decoding 

algorithms available, some also include a language model 

(LM): 

a. Best path decoding: Best path decoding only uses the 

output of the NN (i.e. no language model) and computes 

an approximation by taking the most likely character at 

each position. It calculates the best path by taking the 

most likely character per time-step. It undoes the 

encoding by first removing duplicate characters and 

then removing all blanks from the path what remains 

represents the recognized text. 

b. Beam search: It also only uses the NN output, but it uses 

more information from it and therefore produces a 

more accurate result. Beam search decoding iteratively 

creates text candidates (beams) and scores them. At 

each time-step, only the best scoring beams from the 

previous time-step are kept. 

 

The RNN output matrix of the given figure 8 contains 2 time-

steps (t0 and t1) and 3 labels (a, b and - representing the 

CTC-blank). Best path decoding (see left figure) takes the 

most probable label per time-step which gives the path "--" 

and therefore the recognized text "" with probability 

0.6*0.6=0.36. Beam search calculates the probability of 

labelings. For the labeling "a" the algorithm sum over the 

paths "-a", "a-" and "aa" (see right figure) with probability 

0.6*0.4+0.4*0.6+0.4*0.4=0.64. The only path which gives "" 

still has probability 0.36, therefore "a" is the result returned 

by beam search. 

 

 
Fig 8: Left:  Concatenate most probable characters per 

time-step to get best path, Right: All paths corresponding 

to text “a” 

2.4. Evaluation Metric 

The probability of the recognized text is calculated by using 

the CTC loss function. The loss function takes the character-

probability matrix and the text as input and outputs the loss 

value L.[3] The loss value L is the negative log-likelihood of 

seeing the given text, i.e. L = -log(P). If we feed the character-

probability matrix and the recognized text to the loss function 

and afterwards undo the log and the minus, we get the 

probability P of the recognized text: P = exp(-L). 

 

2.5. Results and Declaration 

 python main.py –train 
 

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Handwriting_recognition
https://towardsdatascience.com/5a889a3d85a7
https://towardsdatascience.com/5a889a3d85a7
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 python main.py –validate 
 

 
 

 python main.py 
 
 Input Image: 

 

 
 
 
 
 
 

Output Image: 

 
 

 Input Image: 

 
 
Output Image: 

 
 

 Input Image: 

 
 
Output Image: 

 
 

3. CONCLUSION 

An efficient handwritten character recognition approach is 

proposed in this work. The proposed work employed a deep 

network model to recognize the handwritten texts. 

Preprocessing of dataset is also considered as a major factor 

behind the accuracy of the models. Training of network 

requires a supportive hardware to implement large dataset 

efficiently. It is necessary to train the network with large 

amount of dataset so that the network can easily recognize 

the character. Hence there is a requirement of high memory 

and high processing speed to achieve efficient network. 

In this project, the model consists of 5 layers of 

Convolutional Neural Network (CNN), 2 layers of Recurrent 

Neural Network (RNN) and outputs a character-probability 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 05 | May 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3490 
 

matrix. This matrix is either used for CTC loss calculation or 

for CTC decoding. 

The accuracy can be further improved by applying additional 

preprocessing techniques such as deslanting, word 

segmentation, removing background noises etc. [3] Word 

beam search decoder can be used to decode the text from the 

RNN output matrix instead of best beam search or vanilla 

beam search decoder. 7 layers of Convolutional Neural 

Network can be used instead of 5 layers. Finally, the LSTM 

layers can be replaced by a MDLSTM layer to also propagate 

information along the vertical image axis. 
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