
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3485

Handwritten Text Classification using Deep Learning

Vidushi Garg

Student, Department of Information Technology, Maharaja Agrasen Institute of Technology, New Delhi, India
---***---

Abstract - In this paper, an innovative method is presented for
offline handwritten character detection using deep neural
networks. In today’s world, it has become easier to train deep
neural networks because of availability of huge amount of
data and various Algorithmic innovations which are taking
place. Handwritten Text Recognition (HTR) is an automatic
way to transcribe documents by a computer. There are two
main approaches for HTR, namely hidden Markov models and
Artificial Neural Networks (ANNs). The proposed HTR system
is based on ANNs. Preprocessing methods enhance the input
images and therefore simplify the problem for the classifier.
These methods include contrast normalization as well as data
augmentation to increase the size of the dataset. The classifier
has Convolutional Neural Network (CNN) layers to extract
features from the input image and Recurrent Neural Network
(RNN) layers to propagate information through the image.
The RNN outputs a matrix which contains a probability
distribution over the characters at each image position.
Decoding this matrix by the connectionist temporal
classification operation yields the final text.

Key Words: Convolutional and Recurrent Neural
Network (CRNN), Long short-term memory (LSTM),
Connectionist temporal classification (CTC),
Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), Artificial Neural Network (ANN),
Handwritten Text Recognition model (HTR)

1. INTRODUCTION

Handwritten Text Recognition (HTR) is the task of

transcribing handwritten text into digital text. It is a

technology that is much needed in this world as of today.

Before proper implementation of this technology we have

relied on writing texts with our own hands which can result

in errors. It’s difficult to store and access physical data with

efficiency. Manual labor is required in order to maintain

proper organization of the data. Throughout history, there

has been severe loss of data because of the traditional

method of storing data. Modern day technology is letting

people store the data over machines, where the storage,

organization and accessing of data is relatively easier. [2]

Adopting the use of Handwritten Text Recognition software,

it’s easier to store and access data that was traditionally

stored. Furthermore, it provides more security to the data.

Handwriting recognition is a challenging task because of

many reasons. The primary reason is that different people

have different styles of writing. The secondary reason is

there are lot of characters like Capital letters, Small letters,

Digits and Special symbols. Thus a large dataset is required

to train a near-accurate neural network model. Handwritten

Text Recognition (HTR) is divided into online and offline

recognition. Online recognition is performed while the text

to be recognized is written (e.g. by a pressure sensitivity

device), therefore geometric and temporal information is

available. Offline recognition, on the other hand, is

performed after the text has been written. The text is

captured (e.g. by a scanner) and the resulting images are

processed.

To build the Handwritten Text Recognition model (HTR), the

neural network is trained on word-images from the IAM

dataset. The proposed system makes use of Artificial Neural

Networks (ANNs). Multiple Convolutional Neural Network

(CNN) layers are trained to extract relevant features from the

input image. These layers output a 1D or 2D feature map (or

sequence) which is handed over to the Recurrent Neural

Network (RNN) layers. The RNN propagates information

through the sequence. Afterwards, the output of the RNN is

mapped onto a matrix which contains a score for each

character per sequence element. As the ANN is trained using

a specific coding scheme, a decoding algorithm must be

applied to the RNN output to get the final text. Training and

decoding from this matrix is done by the Connectionist

Temporal Classification (CTC) operation.

2. RESEARCH METHODOLGY

2.1. Description of the dataset

To build the Handwritten Text Recognition model (HTR), the

neural network is trained on word-images from the IAM

dataset. The IAM Handwriting Database contains forms of

handwritten English text which can be used to train and test

handwritten text recognizers and to perform writer

identification and verification experiments. The database

contains forms of unconstrained handwritten text, which

were scanned at a resolution of 300dpi and saved as PNG

images with 256 gray levels.

The IAM Handwriting Database 3.0 is structured as follows:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3486

 657 writers contributed samples of their handwriting

 1'539 pages of scanned text

 5'685 isolated and labeled sentences

 13'353 isolated and labeled text lines

 115'320 isolated and labeled words

The words have been extracted from pages of scanned text

using an automatic segmentation scheme and were verified

manually.

Fig 1: Dataset

2.2. Data Preprocessing

The input is a gray-value image of size 128×32. Usually, the

images from the dataset do not have exactly this size,

therefore resize it (without distortion) until it either has a

width of 128 or a height of 32. Then, copy the image into a

(white) target image of size 128×32. This process is shown in

Figure 2. Finally, normalize the gray-values of the image

which simplifies the task for the NN. Normalization is done to

change the range of pixel intensity values.

Data augmentation is a strategy to significantly increase the

diversity of data available for training models, without

actually collecting new data. Data augmentation techniques

such as cropping, padding, and horizontal flipping are

commonly used to train large neural networks. Data

augmentation can easily be integrated by copying the image

to random positions instead of aligning it to the left or by

randomly resizing the image.

Fig 2: Left: an image from the dataset with an arbitrary

size. It is called to fit the target image of size 128 x 32, the

empty part of the target image is filled with white color.

The model not only learns how to read text, but it also learns

how the samples look like. There are some noticeable

patterns in the IAM dataset as shown in Figure 3:

 Images have high contrast
 Words are tightly cropped
 Bold writing style

Fig 3: A sample from the IAM dataset

If an image with a very different style is feed to the model, the

model might predict a bad result. The reason is that the

model has never seen images like this:

 Low-contrast
 Much space around the word
 Lines very thin

Hence, the input image is pre-processed such that it looks like

a sample from IAM (see Figure 4). First, crop the image: The

model still recognizes “.”. Then, increase the contrast: Now,

the model gives a much better result: “tello”. This is almost

correct. If the lines are thickened by applying a morphological

operation, the model is finally able to recognize the correct

text: “Hello”.

Fig 4: Pre-processing steps and the recognized text for

each of them

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3487

2.3. Implementation

2.3.1. Methodology

The end-to-end trainable Artificial Neural Network (ANN)

contains 5 convolutional layers and 2 layers of bidirectional

LSTM units with 256 hidden cells. The input images only

contain single words. The input to the ANN is a gray-value

image containing text. A stack of convolutional layers maps

the input image onto feature maps. The output of the final

layer of the CNN can be regarded as a sequence of length T

with F features. Information is then propagated along this

sequence with a stack of RNNs. [3] The RNNs map the

sequence to another sequence of same length T, assigning

probabilities to each of the C different classes. Finding the

most probable labeling in this C x T sized matrix is called

decoding and is done with a CTC output layer. While training,

the CTC loss is used to calculate a loss value for a training batch

which is then backpropagated to the output layer of the RNN.

The usage of the CTC operation is twofold: it serves as a loss

function and as a decoding function.

Fig 5: The network architecture called Convolutional and

Recurrent Neural Network (CRNN). It uses CNN layers,

followed by LSTM layers and a final CTC layer.

2.3.2. Convolutional Neural Network

A convolutional neural network consists of an input and an

output layer, as well as multiple hidden layers. The hidden

layers of a CNN typically consist of a series of convolutional

layers that convolve with a multiplication or other dot

product. The activation function is commonly a RELU layer,

and is subsequently followed by additional convolutions such

as pooling layers, fully connected layers and normalization

layers, referred to as hidden layers because their inputs and

outputs are masked by the activation function and final

convolution. The final convolution, in turn, often involves

backpropagation in order to more accurately weight the end

product.

Fig 6: Left: Network diagram of a convolutional layer. An image

patch x is convolved by a kernel k. As a non-linearity the RELU

function is applied. Finally, pooling generates a summary

statistic for small regions. Middle: plot of the RELU function.

Right: max-pooling of a 2 × 2 region.

2.3.3. Long Short-Term Memory (LSTM) Neural
Network

Long short-term memory (LSTM) is an artificial recurrent

neural network (RNN) used in the field of deep learning.

Unlike standard feed-forward neural networks, LSTM has

feedback connections. It can not only process single data

points (such as images), but also entire sequences of data

(such as speech or video). A common LSTM unit is composed

of a cell, an input gate, an output gate and a forget gate. The

cell remembers values over arbitrary time intervals and the

three gates regulate the flow of information into and out of

the cell. LSTM networks are well-suited

to classifying, processing and making predictions based

on time series data, since there can be lags of unknown

duration between important events in a time series. LSTMs

were developed to deal with the exploding and vanishing

gradient problems that can be encountered when training

traditional RNNs.

Fig 7: Architecture of Long Short-Term Memory (LSTM)

Neural Network

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Classification_in_machine_learning
https://en.wikipedia.org/wiki/Computer_data_processing
https://en.wikipedia.org/wiki/Predict
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Vanishing_gradient_problem

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3488

2.3.4. Connectionist Temporal Classification (CTC)
Decoder

Connectionist temporal classification (CTC) is a type of

neural network to produce output using associated scoring

function, for training recurrent neural networks (RNNs) such

as LSTM networks to tackle sequence problems where the

timing is variable. It can be used for tasks like on-

line handwriting recognition or recognizing phonemes in

speech audio.

The NN for such use-cases usually consists of convolutional

layers (CNN) to extract a sequence of features and recurrent

layers (RNN) to propagate information through this

sequence. It outputs character-scores for each sequence-

element, which simply is represented by a matrix. Now, there

are two things we want to do with this matrix:

1. train: calculate the loss value to train the NN

2. infer: decode the matrix to get the text contained in the
input image

Both tasks are achieved by the CTC operation. The NN-
training will be guided by the CTC loss function. We only feed
the output matrix of the NN and the corresponding ground-
truth (GT) text to the CTC loss function. It tries all possible
alignments of the GT text in the image and takes the sum of
all scores. This way, the score of a GT text is high if the sum
over the alignment-scores has a high value. There was the
issue of how to encode duplicate characters. It is solved by
introducing a pseudo-character (called blank, not a white-
space character).

There are the following different decoding

algorithms available, some also include a language model

(LM):

a. Best path decoding: Best path decoding only uses the

output of the NN (i.e. no language model) and computes

an approximation by taking the most likely character at

each position. It calculates the best path by taking the

most likely character per time-step. It undoes the

encoding by first removing duplicate characters and

then removing all blanks from the path what remains

represents the recognized text.

b. Beam search: It also only uses the NN output, but it uses

more information from it and therefore produces a

more accurate result. Beam search decoding iteratively

creates text candidates (beams) and scores them. At

each time-step, only the best scoring beams from the

previous time-step are kept.

The RNN output matrix of the given figure 8 contains 2 time-

steps (t0 and t1) and 3 labels (a, b and - representing the

CTC-blank). Best path decoding (see left figure) takes the

most probable label per time-step which gives the path "--"

and therefore the recognized text "" with probability

0.6*0.6=0.36. Beam search calculates the probability of

labelings. For the labeling "a" the algorithm sum over the

paths "-a", "a-" and "aa" (see right figure) with probability

0.6*0.4+0.4*0.6+0.4*0.4=0.64. The only path which gives ""

still has probability 0.36, therefore "a" is the result returned

by beam search.

Fig 8: Left: Concatenate most probable characters per

time-step to get best path, Right: All paths corresponding

to text “a”

2.4. Evaluation Metric

The probability of the recognized text is calculated by using

the CTC loss function. The loss function takes the character-

probability matrix and the text as input and outputs the loss

value L.[3] The loss value L is the negative log-likelihood of

seeing the given text, i.e. L = -log(P). If we feed the character-

probability matrix and the recognized text to the loss function

and afterwards undo the log and the minus, we get the

probability P of the recognized text: P = exp(-L).

2.5. Results and Declaration

 python main.py –train

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Handwriting_recognition
https://towardsdatascience.com/5a889a3d85a7
https://towardsdatascience.com/5a889a3d85a7

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3489

 python main.py –validate

 python main.py

 Input Image:

Output Image:

 Input Image:

Output Image:

 Input Image:

Output Image:

3. CONCLUSION

An efficient handwritten character recognition approach is

proposed in this work. The proposed work employed a deep

network model to recognize the handwritten texts.

Preprocessing of dataset is also considered as a major factor

behind the accuracy of the models. Training of network

requires a supportive hardware to implement large dataset

efficiently. It is necessary to train the network with large

amount of dataset so that the network can easily recognize

the character. Hence there is a requirement of high memory

and high processing speed to achieve efficient network.

In this project, the model consists of 5 layers of

Convolutional Neural Network (CNN), 2 layers of Recurrent

Neural Network (RNN) and outputs a character-probability

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3490

matrix. This matrix is either used for CTC loss calculation or

for CTC decoding.

The accuracy can be further improved by applying additional

preprocessing techniques such as deslanting, word

segmentation, removing background noises etc. [3] Word

beam search decoder can be used to decode the text from the

RNN output matrix instead of best beam search or vanilla

beam search decoder. 7 layers of Convolutional Neural

Network can be used instead of 5 layers. Finally, the LSTM

layers can be replaced by a MDLSTM layer to also propagate

information along the vertical image axis.

REFERENCES

[1] S. Mori, C. Y. Suen, and K. Yammamoto, “historical

review of OCR research and development,” Proc. IEEE,

vol. 80, no. 7, pp. 1029-1058, 1992.

[2] Shubham Sanjay Mor, Shivam Solanki, Saransh Gupta,

Sayam Dhingra, Monika Jain, Rahul Saxena

“HANDWRITTEN TEXT RECOGNITION: with Deep

Learning and Android”

[3] Diploma Thesis by Harald Scheidl “Handwritten Text

Recognition in Historical Documents”

[4] Batuhan Balci, Dan Saadati, Dan Shiferaw “Handwritten

Text Recognition using Deep Learning”

[5] T. Tieleman and G. Hinton, “Lecture 6.5–rmsprop: Divide

the gradient by a running average of its recent

magnitude”, COURSERA: Neural Networks for Machine

Learning, 2012.

[6] Bishwajit Purkaystha, Tapos Datta, Md Saiful Islam,

“Bengali Handwritten Character Recognition Using

Deep Convolutional Neural Network”, 2017 20th

International Conference of Computer and Information

technology(ICCIT), 22-24 December, 2017

[7] Goodfellow, Y. Bengio, and A. Courville. Deep Learning.

MIT Press, 2016.

