
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3537

Comprehensive Review of Stream Processing Tools

Premal Singh1, Prof. Chaitra B H2

1Department of Computer Science and Engineering, R.V. College of Engineering, Bengaluru, Karnataka, India
2Department of Computer Science and Engineering, R.V. College of Engineering, Bengaluru, Karnataka, India

---***---

Abstract - Stream Processing is a technology widely used in
fetching continuous streams of data within a very short period
of time. In the internet era, data is not limited to a small set of
producers and consumers. There are a large number of
producers and consumers. In the earlier methods, connections
would be created between each producer and consumer
mapped to the data being transferred and hence it became
difficult to manage large amounts of data. Stream processing
makes it easy to handle a large number of transactions by
bringing the concept of message broker, which reduces the
number of connections. Apache Kafka is a fault tolerant,
scalable and extremely fast open-source stream processing
software. RabbitMQ is a lightweight message broker that
supports various different protocols. Apache ActiveMQ is a
message broker, which supports flexible and powerful open
source multiprotocol messaging. All these stream processing
tools have their own advantages and disadvantages. This
paper performs and in-depth comparative study of these
stream processing tools, which are widely used to handle large
amounts of data. Such a study will be helpful in identifying the
suitable screen processing tool for the required application.

Key Words: Stream Processing, Message Broker, Producer,
Consumer

1. INTRODUCTION

Software industry enterprises often propose a requirement
to make data communication within its services to be
reliable, fault tolerant and extremely fast. With this reason, a
lot of enterprises have started adopting stream processing
software to provide solutions, such as (i) simple message
passing through inter-service communication in
microservice architecture, and (ii) whole stream processing
platform applications. One of the examples of such a
software application that is frequently used to book cabs
requires a lot of real-time processing. These applications
handle roughly around more than a trillion messages per day
and results in data volume of Petabytes. Other similar
applications, that widely use stream processing, include chat
applications, social media applications and media streaming
platforms. One of the reasons, why these tools are in much
demand for these applications, is that this tool is based on
the Publisher/Subscriber Messaging model.
Publisher/Subscriber Messaging model is a messaging
model, which performs asynchronous service-to-service
communication. It is primarily used in serverless and
microservices architectures. In this architecture, messages
are exchanged without knowing the sender or the recipient.

Publishers refer to a set of senders who would be sending
messages to a topic. Topic refers to an intermediary channel
that receives a message from a publisher, and sends it to the
subscriber.

There are a wide range of applications, which implement a
publisher/subscriber model. Bhawiyuga et. al. [1] developed
a Publisher/Subscriber based software that would avail real
time web access on constrained devices. This system
includes sensor-actuator equipped devices, a web-based
client and a Message Queueing Telemetry Transport (MQTT)
broker. MQTT is a Publisher/Subscriber messaging protocol
designed for constrained physical devices. With this, use of
the Publisher/Subscriber model helps in fast, fault tolerant
and reliable messaging between components of this system.
Yong-Kyung Oh et. al. [2] discusses how message brokering
services that are based on publish and subscribe paradigm
are getting adopted in many areas such as remote facilities
monitoring. In this paper, they have introduced a cloud-
based message brokering service, which allows better
scalability and dynamic load balancing between brokers.
Kawazoe et. al. [3] present a testing framework for a
message broker system for consumer devices based on
Publisher/Subscriber Paradigm. There are various
challenges that a tester needs to face while testing such an
application. This paper describes how testing of such an
application becomes easy with their framework. Hiraman et.
al. [4] present a study of Kafka in processing large amounts
of data stream. Apache Kafka is a very popular architecture
used for processing stream data. Kato et. al. [5] discuss how
heavy processing loads are one of the major issues for deep
learning, and hence develop a prototype system of the
proposed distributed stream processing infrastructure using
Ray, a distributed execution framework and Apache Kafka,
and demonstrate its performance. .Hong et. al. [6] presented
a performance analysis of RabbitMQ and REST API
respectively as the middleware responsible for messaging
between the services of microservice web applications.
Publisher/Subscriber paradigm for the large scale IoT
systems face issues such as data confidentiality and service
privacy. Duan et. al. [7] propose a security framework to
bridge this gap.

In this paper, a comparative review of different stream
processing tools has been performed. It has been particularly
analyzed that how different applications widely used in
domains such as IoT, Cloud Computing utilize the stream
processing technology, to ensure that service to service
communication becomes fast, fault-tolerant and scalable.
The paper is organized as follows. Section II discusses about

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3538

the concept of publisher/subscriber messaging model. Next,
in Section III, the concepts and basic working of Apache
Kafka, RabbitMQ and Apache ActiveMQ have been discussed.
This is followed by presentation of a comparison between
these tools in Section IV. Finally, Section V discusses some of
the conclusions.

2.0 Publisher/Subscriber Messaging Model

In applications based on Distributed Systems, the
components of the system often need to communicate with
other components whenever any event takes place. In the
Client/Server messaging system, clients send a request to the
server, and then wait for its response [8]. An effective way to
decouple senders from receivers is to use asynchronous
messaging. This is implemented using a message queue,
where the sender puts their message in the queue and the
receiver fetches the message from the queue. With this, the
need of blocking the sender to wait for the response can be
avoided. Use of message queues however does not scale well
for a large number of recipients. Hence, the problem that
arises with conventional message queues is that when the
number of consumers is large, it makes the entire system
effectively slower.

The solution to this scenario is a Publisher subscriber
messaging model. Publisher refers to a sender, who sends the
message. Subscriber refers to a recipient, receiving that
message. Only difference is that the publisher publishes the
message to a topic. A topic is a category of messages.
Subscriber receives the message from the topic., The
publisher therefore does not need to keep a track of the
subscribers that need to subscribe to the message. The
publisher only needs to send the message to the topic.
Subscriber needs to subscribe to the topic [9]. For example, if
there are x senders, and y receivers, and each sender wants to
send a message to each receiver, there would be a
requirement of xy connections. Figure 1 depicts this scenario.

Fig. 1: All Senders communicating with all receivers

However, with a publisher/subscriber messaging model,
the requirement will be reduced x+y messages, since there
will be a broker to which all publishers and subscribers will
be connected as depicted in Fig. 2.

Fig. 2: All Senders communicating with all receivers
through message broker

Publisher/Subscriber Messaging Model offers various
benefits such as improving the scalability and reliability.

3.0 Open Source Stream Processing Software

This section discusses some of the most commonly used
open source stream processing software for industrial
applications such as Apache Kafka, RabbitMQ and ActiveMQ.

A. Apache Kafka

Apache Kafka is a stream processing software developed

in Scala and Java. Kafka runs as a cluster on multiple servers.
This Kafka cluster stores a stream of records in categories
called topics. Each record is composed of a timestamp, key
and a value. There are four major APIs provided by Kafka,
which are Producer API, Consumer API, Connector API and
Streams API.

Producer API allows a service can publish a stream of

messages to Kafka topic(s) . Consumer API enable a service
subscribe to a group of topics and process the message
stream produced to them. The Streams API makes the
service act as a stream processor, that is consuming an input
stream from topic(s) and producing an output stream to
output topic(s). Connector API allows executing reusable
producers/consumers that connect Kafka topics to existing
applications or data systems.

A topic is a common name to which specific messages are

published. For example, if messages are needed to be
categorized into classes, topics can be used to represent
these classes. Consumers subscribe to the topic and receive
messages from the specific category, which the topic maps
to. Topics in Kafka can have any number of consumers. Each
Kafka topic is distributed into partitions. With the help of
partitions, topics can be parallelized by dividing the data in a
particular topic across multiple brokers. Each message
within a partition is identified using offset.

Each broker holds a number of partitions and each of

these partitions can either be a leader or a replica for a topic.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3539

Whenever any read/write is done, it goes through the leader.
Leader is responsible for updating the other replicas. In case
any leader fails, a replica takes over the leader.

Producer makes a write to a leader partition and that

leader partition makes sure replica partitions get updated.
This makes sure the system is fault tolerant.

Consumers read from any single partition, and therefore

the throughput of message consumption gets scaled, as it is
in message production. Consumers are also grouped into a
group of consumer groups for a given topic.

Apache Kafka can be used either as a storage, messaging

or a stream processing system.

B. RabbitMQ

RabbitMQ is a message broker software that is also widely

used by industries for stream processing. Advantages of
using RabbitMQ are that it is a lightweight message broker. It
can be easily deployed on premises, and in the cloud as well.
Another advantage of using RabbitMQ is that a lot of
messaging protocols are supported.

Producer and Consumer refer to the sender and receiver

in RabbitMQ. Producer publishes a message to the exchange.
The exchange receives the message. The Exchange has the
responsibility for routing that message to the receiver.
RabbitMQ takes different message attributes such as routing
keys. Routing key is the key for the exchange, which tells
how the message needs to be routed. Concept of routing key
is similar to that of the topic in Apache Kafka. The messages
remain in the queue. The consumer handles the message.

C. ActiveMQ

ActiveMQ is a message-oriented middleware developed by

Apache. ActiveMQ is based on Java. It makes use of Java
Message Service (JMS) API.

ActiveMQ sends messages between client applications -

producers and consumers. Producers generate messages and
Consumers receive and process these messages. The
ActiveMQ operates and routes the messages either through
the destinations as a queue or as a topic. If there is a single
consumer, the destination would be a queue. If there are
multiple consumers, the message can be routed with the help
of a topic which is based on the Publisher/ Subscriber model.

JMS is the communication standard used by ActiveMQ.

ActiveMQ sends messages asynchronously. Each ActiveMQ
message is based on the JMS specification. Therefore, it is
made up of headers, optional properties and a body.

High throughput is one of the benefits that ActiveMQ

provides. Since producers do not need to wait for any

acknowledgements, they do not get blocked while sending
messages. ActiveMQ is very flexible. Clients might not be
available temporarily. They can be dynamically added to the
environment. ActiveMQ clients can operate independently.
They do not need to directly interact. They can interact with
the ActiveMQ broker.

4.0 Comparison of Kafka, RabbitMQ and ActiveMQ

Apache Kafka is better than RabbitMQ in terms of
performance. Kafka uses sequential disk I/O to enhance its
performance. Therefore, this makes it a better option for
implementing queues. RabbitMQ, on the other hand, requires
more resources. Kafka is based on a pull model. Kafka
Consumers request a batch of messages from any offset.
RabbitMQ is based on the push model and hence, it stops the
consumers from overwhelming. Kafka provides ordering of
messages, whereas RabbitMQ does not support message
ordering. In Kafka, messages can remain there forever, unless
any message retention policy is specified. RabbitMQ on the
other hand is a queue, so once a message is consumed, it does
not remain in the queue anymore. Kafka provides delivery
guarantees but RabbitMQ does not guarantee atomicity.
Kafka does not prioritize messages, however RabbitMQ
allows specifying message priorities.

ActiveMQ is used in enterprise projects. It is used to store
multiple instances. RabbitMQ, on the other hand, is a message
broker and runs in a low-level AMQP protocol. ActiveMQ can
be implemented with two brokers. RabbitMQ requires only
one broker. Message Patterns available in ActiveMQ are
publish/subscribe and message queue. RabbitMQ supports
Message Queue, publish/subscribe, RPC and routing.

 Kafka producer does not wait for acknowledgements from
the broker, whereas ActiveMQ maintains the delivery state of
every message sent. Kafka has better storage efficiency when
compared to ActiveMQ. ActiveMQ uses more space than
Kafka. Kafka is a pullbased messaging system, whereas
ActiveMQ is a push-based messaging system. As a result of
this, throughput in Kafka is higher than that of ActiveMQ. [10]

5. CONCLUSIONS

This paper presents a general study and comparison on open
source stream processing softwares used by various
software applications. Based on the comparisons done on
Kafka, RabbitMQ and ActiveMQ, it can be concluded that
each software can deliver an effective messaging system
depending specifically on the use case. Stream processing is
implemented in various IoT and cloud-based applications to
provide fault tolerant, highly scalable low latency solutions.

REFERENCES

[1] A. Bhawiyuga, D. P. Kartikasari and E. S. Pramukantoro,
"A publish subscribe based middleware for enabling real
time web access on constrained device," 2017 9th

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3540

International Conference on Information Technology and
Electrical Engineering (ICITEE), Phuket, 2017, pp. 1-5

[2] F. Y. Oh, S. Kim, H. Eom, H. Y. Yeom, J. Park and Y. Lee, "A
scalable and adaptive cloud-based message brokering
service," 13th International Conference on Advanced
Communication Technology (ICACT2011), Seoul, 2011, pp.
498-501.

[3] H. Kawazoe, D. Ajitomi and K. Minami, "A test framework
for large-scale message broker system for consumer
devices," 2015 IEEE 5th International Conference on
Consumer Electronics - Berlin (ICCE-Berlin), Berlin, 2015,
pp. 24-28.

[4] B. R. Hiraman, C. Viresh M. and K. Abhijeet C., "A Study of
Apache Kafka in Big Data Stream Processing," 2018
International Conference on Information , Communication,
Engineering and Technology (ICICET), Pune, 2018, pp. 1-3.

[5] K. Kato, A. Takefusa, H. Nakada and M. Oguchi, "A Study of
a Scalable Distributed Stream Processing Infrastructure
Using Ray and Apache Kafka," 2018 IEEE International
Conference on Big Data (Big Data), Seattle, WA, USA, 2018,
pp. 5351-5353.

[6] X. J. Hong, H. Sik Yang and Y. H. Kim, "Performance
Analysis of RESTful API and RabbitMQ for Microservice Web
Application," 2018 International Conference on Information
and Communication Technology Convergence (ICTC), Jeju,
2018, pp. 257-259.

[7] L. Duan, C. Sun, Y. Zhang, W. Ni and J. Chen, "A
Comprehensive Security Framework for Publish/Subscribe-
Based IoT Services Communication," in IEEE Access, vol. 7,
pp. 25989-26001, 2019.

[8] D. Serain, "Client/server: Why? What? How?,"
International Seminar on Client/Server Computing. Seminar
Proceedings (Digest No. 1995/184), La Hulpe, Belgium,
1995, pp. 1/1-111 vol.1.

[9] Xiwei Feng, Chuanying Jia and Jiaxuan Yang, "Semantic
web-based publish-subscribe system," 2008 IEEE
International Conference on Service Operations and
Logistics, and Informatics, Beijing, 2008, pp. 1093-1096.

[10] V. M. Ionescu, "The analysis of the performance of
RabbitMQ and ActiveMQ," 2015 14th RoEduNet
International Conference - Networking in Education and
Research (RoEduNet NER), Craiova, 2015, pp. 132-137.

