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Abstract - Food photography has become a very popular 
trend in this era. Social media sites are flooded with images of 
food every day. Many people will not be able to figure out what 
dish it is, and it will be extremely difficult to determine it 
accurately. There are many diet-conscious people who also 
face the same problem. So, there was a need for a system that 
provides the details of any dish. Hence, we will use image 
processing to process an input image, classification methods 
and convolutional neural networks to implement a system that 
will be able to classify and label the unique ingredients in the 
picture, and finally, give the recipe of a dish. As the largest 
freely accessible collection of recipe data, Recipe1M offers the 
opportunity to train high-capacity models on aligned, 
multimodal data. Furthermore, we demonstrate that 
regularization by introducing a high-level classification 
technique improves retrieval overall performance to rival that 
of humans and also empowers semantic vector math. 

 
1. INTRODUCTION 

Nutrition is one of the most important factors when it comes 
to human well-being. Every day, innumerable food pictures 
are uploaded by users on social networks; from the first 
home-made cake to the most expensive dish, the joy is 
shared with you whenever a dish is successfully prepared. 
Food is fundamental to human existence. Not only does it 
provide us with energy but it also defines our identity and 
culture [11, 20]. It is a fact that good food is appreciated by 
everyone, irrespective of how different people may be from 
one another. 

Food culture has been spreading quite ever within the 
current digital era, with many of us sharing pictures of food 
they are eating across social media [22]. Sites like Facebook, 
Instagram, and twitter are overflowing with pictures and 
videos of food. In addition, eating patterns and the culture of 
cooking has evolved over time. In the past, food was mostly 
prepared at home, but nowadays we frequently consume 
food prepared by catering and restaurants. Thus, access to 
detailed information about prepared food is limited, and 
consequently, it is hard to know precisely what we eat.  

The last few years have witnessed outstanding 
improvements in visual recognition tasks such as natural 

image classification [11, 22], object detection [16, 18], and 
semantic segmentation [10, 24]. However, in comparison to 
natural image understanding, food recognition poses 
additional challenges, since food and its components have 
high intraclass variability and present heavy deformations 
that arise throughout the cooking process. 

Hence, we aim to create a system that will help us obtain the 
ingredients and recipes of the food we eat, using just their 
images. We are using technologies such as image 
classification, convolutional neural network, transformer 
model, recurrent neural networks, and attention strategies 
for the instruction decoder, and multi-modal embedding, to 
achieve our goal.  

 

Fig-1: Example of a generated recipe. 

2. RELATED WORK 

Food Understanding: In past large-scale food dataset were 
introduced, such as Food-101 [1] and Recipe1M [3] together 
with a recently help iFood challenge -2019 has enabled 
significant achievements in visual food recognition, by 
providing reference benchmarks to train and compare 
machine learning approaches. As a result, there is currently a 
vast literature in computer vision dealing with a variety of 
food-related tasks. Subsequent works tackle more 
challenging tasks such as estimating the number of calories 
from a given food image. 

Early attempts on food-recipe generation [8] where they 
compared and evaluated popular text-based and vision-
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based technologies on a very large multimodal dataset 
containing about 101k recipes corresponding to 101k food 
categories. They proposed a real application for daily users 
to identify recipes. This application is a web search engine 
that enables any mobile user to submit a query image and 
retrieve the most relevant recipes in their dataset. 

Significant efforts were made [5] proposed deep 
architectures for simultaneous learning of ingredient 
recognition and food categorization, by making use of the 
mutual relationship between them. They learned semantic 
labels of ingredients and therefore the deep features are 
then applied for the retrieval of recipes. A multi-task deep 
learning model is used to achieve this goal. Recent results on 
large datasets showed better outcome [3] where they 
trained a neural network on a huge dataset of over 1 million 
recipes and 800,000 images to find a joint embedding of 
recipes and images that produces accurate results on image-
recipe retrieval jobs. 

 

 
 

Fig-2: Multi-model architecture 
 
3. Generating recipe from image 
 
It is a challenging task to generate a recipe (title, ingredients, 
and instructions) from an image. It also demands a 
contemporaneous understanding of the ingredients 
composing the dish as well as the transformations they went 
through, for e.g. slicing, blending, or mixing with other 
ingredients. Instead of predicting recipes directly from an 
image, we went for creating a pipeline that benefited from an 
intermediate step providing the prediction of an ingredient 
list. Then the sequence of instructions would be generated 
and it would be conditioned on both images as well as its 
corresponding list of ingredients. There will be an interplay 
between the image and ingredients, which provides 
additional insight and will show later were processed to 
produce the resulting dish given. 
 
Figure 2 shows detailed information of our approach. Our 
recipe generation system takes a food image as an input and 
as an output, a sequence of cooking instructions is generated 
by means of an instruction decoder. Further, it takes input 
from two embeddings. The first represents visual features 
that are extracted from the image and second embedding 
encodes the ingredients extracted from the image. 
Subsection 3.1 depicts the introduction of our transformer-
based instruction decoder, which permits us to review the 
transformer. As a result of the study, we are now able to 
predict ingredients in an order less manner (subsection 3.1). 

Therefore, reviewing the optimization is shown in 
subsection 3.2.  
   

3.1 Cooking Instruction Transformer 

For a given input image with associated ingredients, we 
focus to predict a sequence of instruction R = (r1, ..., rT ) 
(where rt denotes a word in the sequence) by means of an 
instruction transformer [2]. The first instruction that is 
predicted is the title of the recipe. The transformer is 
conditioned jointly on two inputs: the ingredient embedding 
eL and the image representation eI and. We used ResNet-150 
[7] to extract image representation and to get ingredient 
embedding eL by the usage of a decoder architecture to 
predict ingredients, followed by a single embedding layer 
mapping each ingredient into a fixed-size vector. The 
instruction decoder consists of transformer blocks, each of 
them containing two attention layers followed by a linear 
layer [2]. The first attention layer uses a self-attention 
strategy over previously generated outputs and the second 
one attends to the model conditioning in order to refine the 
self-attention output. t. The transformer model is composed 
of multiple transformer blocks followed by a linear layer and 
a SoftMax nonlinearity that provides a distribution over 
recipe words for each time step t. Figure 3a illustrates 
a traditionally conditioned single module transformer 
model. Our recipe generating system is dependent on two 
sources: the image features eI and ingredients embeddings 
eL. Hence, we want our attention to giving importance to 
both modalities simultaneously for guiding the instruction 
generation process. To that end, we have three different 
fusion strategies (depicted in Figure 3): 

– Concatenated attention. This strategy first concatenates 
both ingredients eL and image eI embeddings. After that, 
attention is applied over the combined embeddings. 

– Independent attention. This strategy includes two 
attention layers to handle the bi-modal conditioning. In this 
case, one-layer attends over the image embedding eI , 
whereas the other attends over the ingredient embeddings 
eL. The output of both attention layers is combined through 
summation operation. 

 – Sequential attention. This strategy sequentially attends 
over the two conditioning modalities. In our system, we 
study two orderings: (1) first image embeddings eI and then 
over ingredient embeddings eL and (2) ingredients first 
where the order is flipped and we first attend over 
ingredient embeddings eL followed by image embeddings eI. 
 

3.2 Optimization 
 
Our recipe system is trained in two stages. The first stage 
consists of a pre-training image encoder and ingredients 
decoder.  Then, the next stage consists of training ingredient 
encoder and instruction decoder, along with that it will 
minimize the negative log-likelihood and adjust the values of 
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learnable parameters. During the training period, the 
instruction decoder takes as input the ground truth 
ingredients. Except for the set transformer, all transformer 
models are trained with teacher forcing [17]. 
 

 
 

Fig-3: Attention Strategies 
 

4. EXPERIMENT 
 
This section explains the dataset and detailed description of 
execution which is followed by an exhaustive analysis of 
strategies used for the cooking instruction transformer. Next, 
it compares proposed ingredient prediction models to 
previously introduced baselines. It also shows a comparison 
between our inverse cooking system and retrieval-based 
model. 
 

4.1 Dataset 

We have used the Recipe 1M dataset to obtain food images 
and recipes for training our model. The recipes were scraped 
from many common and popular cooking websites and 
processed through a pipeline that extracted relevant text 
from the raw HTML, downloaded linked images, and 
assembled the data into a compact JSON schema. For 
extraction procedure, excessive whitespace, HTML entities, 
and non-ASCII characters were removed from the recipe 
text. The ingredient strings in this dataset are fundamental 
contribution work to make it usable for machine learning 
tasks. 

Thanks to the latest advances in the field of science and 
technology, numerous people have got access to the internet. 
Many social media sites and simple websites have become 
platforms where users upload and share images and videos 
about various topics. Food is one such topic. They have 
essentially become data containers. Many search engines, 
such as Google and Bing go through a large number of 
images, websites, videos, or any other content that matches a 
text query. In amassing this dataset, the Google search 
engine was used. 

Initially, 50 million images were downloaded, 5 images per 
recipe. The title of each recipe was used as a query for 
obtaining the images. Top 50 results from the query result 
were downloaded and added to the dataset. For this task, 

publicly available python libraries were used. Next, 
corrupted and inappropriate images were filtered out. 

The dataset includes approximately 0.4% duplicate recipes 
and, apart from the duplicate recipes, about 20% of recipes 
have non-unique titles but differ by a median of sixteen 
ingredients. 0.2% of recipes share equivalent ingredients but 
are relatively straightforward, having a median of six 
ingredients. Approximately half of the recipes did not have 
any associated images in the initial data collection from 
recipe websites. After the data extension phase, around 2% 
of the recipes are left without any corresponding images. 
Exact duplicates were removed after careful observation, 
using ResNet18 as a feature extractor. 

Around 70% of the data is labelled as training, and the rest of 
the dataset is split equally between the test and validation 
sets. During the dataset extension, an intersection dataset 
was created, in order to have a fair comparison of the 
experimental results on both the initial and the extended 
versions of the dataset.  

The contents of the dataset can be classified into two layers. 
The first layer contains basic information - a title, a list of 
ingredients, and a sequence of instructions for preparing a 
dish, in text format. The second layer adds to the first layer, 
by including all the corresponding images, in JPEG format. 

The average recipe in the dataset comprises nine ingredients 
that are transformed over the course of ten instructions. It 
can be observed that the distributions of data are heavy-
tailed. For example, of the 16k ingredients identified as 
unique, only 4,000 account for 95% of occurrences. At the 
low end of instruction count, one will find the ‘Combine all 
ingredients’ instruction. At the other end are lengthy recipes 
and ingredient lists associated with recipes that include sub-
recipes, which further increase the number of instructions. 

A similar issue of outliers exists also for images: since 
several of the included recipe collections are curated from 
user-submitted images, popular recipes like chocolate cake 
have many more images than the typical recipe. The number 
of unique recipes with corresponding food images in the 
initial process of the data collection phase was 333K. After 
the data extension phase, this number jumped to 1 million. 
On average, the Recipe1M+ dataset contains 13 images per 
recipe whereas Recipe1M has less than one image per recipe. 
Hence, we are going to use the extended dataset to attain 
better results. 

4.2 Implementation Details 

All the neural network models are implemented using the 
Tensorflow2 framework. We have resized images into 256 
pixels and took a random crop of 224x224 for training. For 
evaluation, we select 224x224 pixels from the center. We 
used a transformer with 16 blocks and 8 multi-head 
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attention, each one having dimensionality of 64 for an 
instruction decoder. For the ingredient decoder, we use a 
transformer with 4 blocks and 2 multi-head attention, each 
one with the dimensionality of 256. We have used the last 
layer of ResNet-150 to obtain image embedding. The 
dimension of image and ingredients embedding is 512. The 
maximum limit for ingredients per recipe is set to 20 and 
truncate instructions to a maximum of 150 words. The 
models are trained with Adam optimizer [18] until early-
stopping criteria are met (using patience of 50 and 
monitoring validation loss). 

4.3 Recipe Generation 
 
We have introduced multi-modal architecture with different 
types of attention strategy. Table 1 shows the perplexity of 
each attention strategy model on the validation dataset.  
From the table, we can infer that the result of independent 
attention is worse and it is followed by sequential attention. 
This shows the incompetence of these strategies to predict 
the expected output. However, the best result is shown by 
the concatenation attention i.e. 8.50 because it is easily 
adaptable to give importance to each modality whereas 
independent attention is forced to include importance from 
both the model encoder. Hence, we have used the 
concatenation attention model on our test dataset to 
produce relevant results. 

 

Model Perplexity 

Independent 8.59 

Sequence image first 8.53 

Sequence Ingredient first 8.61 

Concatenated 8.50 

 
Table 1: Recipe perplexity 

 
We have compared our system with the other two models. 
One of them is an image-to-sequence instruction system that 
directly generates instruction from an image feature (I2R) 
while the other model removes the visual features and 
predicts the sequence instruction from ingredients (E2R). By 
improving both I2R and E2R baseline, our system has 
achieved a perplexity of 8.51 on the test dataset. It has 
conquered the other two models having perplexity of 8.67 
(L2R) and 9.66 (I2R) from which we can infer the 
importance of ingredients in predicting instructions. Finally, 
we have trained our model and analyzed the results. We 
notice that generated instructions have an average of 9.21 
sentences containing 9 words each, whereas original 
instructions have an average of 9.08 sentences of length 
12.79. 
 
 

4.4 Ingredient Prediction 
 
Under this section, we compare our ingredient prediction 
approaches to previously described models, with the goal of 
whether ingredients should be considered as lists or sets. We 
have used models from the multilabel classification 
literature as baselines, and then fine-tune them for our 
purposes. On one side, we have models set up on feed-
forward convolutional networks, which are trained to 
predict sets of ingredients. We have conducted experiments 
by considering several losses, namely binary cross-entropy, 
soft intersection over union as well as target distribution  
 

Model  IoU  F1 

ResNet18 17.85 30.30 

Inception V2 26.25 41.58 

Resnet50  27.22 42.80 

Resnet150 28.84 44.11 

TFlist 29.48 45.55 

TFlist + shuffle 27.86 43.58 

TFset 31.80 48.26 

 
Table 2: IoU and F1 of Ingredient models 

 
cross-entropy. On the other side, we have sequential models 
that predict the ingredients as lists by improving order and 
using dependencies among elements. Finally, we have used 
recently proposed models in which set prediction is coupled 
with cardinality prediction to determine which elements to 
include in the set [15] because we see that models that 
exploit dependencies, consistently increase ingredient’s F1 
scores, and strengthen the significance of modeling 
ingredient co-occurrences. 
 

 
 

Fig-4: Ingredient prediction results 
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5. EVALUATION 

Under this section, we have compared our proposed recipe 
generation system with the retrieval system, which we use 
to search recipes in the entire test set for a fair comparison.  

Ingredient prediction evaluation. The recipe retrieval 
model in [3] is used as a baseline and compare it with our 
best ingredient predictions models, namely ResNet-150 and 
TFset. The retrieval model is referred to as Ri2lr, which is 
trained by joint embeddings of images and recipes (title, 
ingredients, and instructions).  Therefore, for the task of 
predicting ingredients in a given recipe, we have used the 
image embeddings to retrieve the closest recipe and report 
metrics of the ingredients for the retrieved recipe. We also 
consider another alternative retrieval system which is 
trained by joint embeddings of images and ingredients list 
(without considering title and instruction and refer to it as 
Ri2l. Table3 provides the obtained results on the Recipe1M 
test dataset. The Ri2lr model performs much better than the 
Ri2l model, which shows the importance of complementary 
information present in the ingredient’s dataset. However, 
our proposed model has outperformed both the retrieval-
based model by a large margin (e.g. TFset outperforms the 
Ri2lr retrieval baseline by 12.26 IoU points and 15.48 F1 
score points), which signifies the superiority of our models.  

 

Model IoU F1 

Ri2l [3] 18.92 31.83 

Ri2lr [3] 19.85 33.13 

ResNet150 (ours) 29.82 45.94 

TFset (ours) 32.11 48.61 

 
Table 3: Comparision of IoU and F1 scores 

 

Model Recall Precision Accuracy 

Ril2r 31.92 28.94 30.35% 

Inverse Cooking [25] 75.47 77.13 76.30% 

Ours 77.89 79.08 78.48% 

 
Table 4:  Precision and Recall of ingredients Model 

 
Recipe generation evaluation. We have compared our 
proposed system of instruction decoder which generates 
instructions given an image and ingredients with a retrieval 
model. For an unbiased comparison, we have retrained the 
retrieval model to find the cooking instructions by providing 
both ingredients and images. In our evaluation, we have 

considered the ground truth ingredients as a reference and 
calculated recall and precision w.r.t. the ingredients that 
appear in the obtained instructions. The recall gives the 
percentage of ingredients in the reference that is present in 
the output instructions, whereas precision provides the 
percentage of ingredients appearing in the instructions that 
also appear in the reference. Table4 displays a comparison 
between our model and the retrieval system. According to 
the results, ingredients appearing in our proposed generated 
instructions have outperformed the recall and precision 
scores of the ingredients in retrieved instructions. 
 

6. CONCLUSION 
 
In this research paper, we have implemented an image-to-
recipe generation system, in which a particular food image, 
when fed into the system, will yield four most probable 
recipes consisting of its Title, the constituent ingredients, 
and sequence of cooking instructions. First, it will determine 
the possible sets of ingredients used, from the food images, 
showing the modeling dependencies, and, along with that, 
we have explored instruction generation conditioned on the 
images and inferred ingredients, which highlights the 
importance of implementing both modalities at the same 
time. Further, we hope that this paper will assist in the 
formation of more automated tools for food and recipe 
understanding. Finally, user study results confirm the 
complication of the task and demonstrate the supremacy of 
our model against state-of-the-art image-to-recipe retrieval 
systems. 
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