# Analysis of Package Weight Variation on Winding Machine 

Prof. Sunil B. Mhetre ${ }^{1}$, Prof. Anil U. Awasare ${ }^{2}$, Mr. Guddu Prasad ${ }^{3}$, Mr. Vaibhav Patil ${ }^{4}$<br>${ }^{1}$ Associate Professor, DKTE's Textile \& Engineering Institute, Ichalkaranji, India<br>${ }^{2}$ Assistant Professor, DKTE's Textile \& Engineering Institute, Ichalkaranji, India<br>${ }^{3}$ Student, DKTE's Textile \& Engineering Institute, Ichalkaranji, India<br>${ }^{4}$ ManagingDirector, Shirol Magasvargiya Co-op. Spinning Mills, Tamdalge, India


#### Abstract

The spun yarn is sold in the market in the form of cones or cheeses, not in the form of ring bobbin. For the longer length of yarn on package, it is wound on package by winding operation. In winding, even though the length of yarn is fixed, the weight of yarn package varies because of some reasons. Weight variation in package is creating problem in selling the yarn packages. The experiment is concerned with the study of package to package weight variation and to find the causes for the weight variation. $A$ considerable amount of work was done on package weight variation in the past and some interesting conclusions were drawn. In this experiment, the study is carried to find out what amount of variation is there \& whether it is significant or not. It was found that package weight variation from doff to doff is significant. The details of results, statistical analysis and conclusions are discussed in concerned sections.


Key Words: Winding Cones, Weight variation, Doff, Relative humidity, Winding Head

## 1. INTRODUCTION

The package of yarn produced on a ring spinning frame i.e., the ring cop is not a marketable package. The spinning mills all over the world generally wind cones of yarn which are packed after conditioning in bags or cartons and sell it to the end-user in the local market or exported on consignment basis. Cones of yarn are wound on the winding machines. In producing a cone package of yarn, the winding machines perform many functions.

Winding the yarn on cones with good winding - off properties, as long a length of yarn as possible, extraction of all faults unacceptable to the end-user, introduction of minimum number of splices into the yarn, paraffin waxing of the yarn, achievement of high machine efficiency, detection and elimination of mixed yarn, winding constant length of yarn on each cone are the main functions, and a modern winding machine should fulfill all these requirements which are equally important. However, the point of interest to the spinner as well as the end-user is the constant length of yarn is wound on each cone which, after conditioning weighs 4.1666 Lbs ( 1890 Gms ). On packing 24 such cones, a bag or carton with net yarn weight of $100 \mathrm{Lb}(45.37 \mathrm{Kg})$ will be produced.

### 1.1 Literature Review

Dr.H.R.Sheikh [1], in his study mentioned that variations in the count of material are minimized at each processing stage in the spinning process by the application of on-line and off-line quality control techniques. However, variations in the count of yarn below and above the actual count are unavoidable and give rise to the variations in the net weight of yarn of constant length, wound on each cone. Variations in paper cone weight were studied by using 4ply paper cones for winding yarn for the local market and 5-ply paper cones for the export. During the process of manufacture, variations in the weight of paper cones were introduced which gave rise to the variations in the gross weight of wound cones of yarn.

These yarn cones in general will have a moisture content level of $6.5 \%$, which corresponds to a moisture regain of approximately $7 \%$. The cones of yarn which are passed for conditioning in the packing room are either stacked on the floor in such a manner that the cones at the bottom were also exposed to the humidified air. The best practice was to creel yarn cones on pegs in the packing room ensuring more effective all round exposure.

In another studies [2], the rejection during package of finished yarn cones because of package weight variation was observed. It was concluded that the potential factors which had bearing on yarn weight, were as follows: count, empty cone weight, moisture content $\%$, \& length of yarn wound onto cone. The contribution of empty cone weight variation, count, \& moisture content was negligible towards the gross weight variation; and variation in the length of yarn on the cone appears to be the potential cause for variation in gross cone weight.

Gungor Durur [3], in his thesis mentioned about slippage between grooved drum and package. Due to a number of reasons, slippage may vary as the package radius increases. As package diameter increases, the deformation is likely to increase. The amount of slippage may depend on: Type of yarn being wound, Yarn count, Yarn tension, Surface between driving drum (steel, Bakelite, chromium plate etc.), \& Pressure between the drum and the package. Due to slippage length of yarn wound on package is not correct. Therefore the weight variation in package may occur.

Milind Koranne [4], in his book mentioned that some end use applications like warping and TFO twisting demands preselected length on winding package. Ideally all packages in a warping creel should be of exact length so that no yarn wastage takes place. Packages with excess length are left with some yarn on the package at the end of last beam or section. Such packages require rewinding for utilization of left over yarn. In TFO twisting, optimum utilization of volume of pot is necessary which demands an exact feed package diameter. When two packages are put in TFO pot one above the other, they should have equal length so that both exhaust simultaneously.

There have been many theoretical and experimental studies about yarn tension and yarn package structures [5]. In these studies, tension fluctuations of yarn path from the cops to bobbins have been researched. Tension problems are investigation at the yarn balloon, yarn tensioning points, yarn guiding elements, and in the winding area. These all the problems lead to variation in yarn package weight.

## 2. METHODS

To study the effect of various factors on variation of weight of full winding package cones the design of experiment is done as follows. One winding machine of 60 heads is selected and after completion of each doffs gross weight of every yarn cone package has taken. In this way 8 different doffs of cones on same machine has taken at different times, thus total data of 480 readings of gross weights of yarn cones were collected. The readings of temperature \& \% Relative Humidity at each doff collection were recorded.

Table -1: Package weights in Grams

| DRU <br> M <br> NO. | Dof <br> f 1 | Dof <br> f 2 | Dof <br> f 3 | Dof <br> f 4 | Dof <br> f 5 | Dof <br> f 6 | Dof <br> f 7 | Dof <br> f 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 18 | 18 | 18 | 18 | 19 | 19 | 19 | 19 |
|  | 90 | 86 | 96 | 83 | 11 | 20 | 00 | 30 |
| 2 | 18 | 18 | 18 | 18 | 18 | 19 | 19 | 18 |
|  | 75 | 78 | 99 | 95 | 89 | 04 | 10 | 90 |
| 3 | 18 | 18 | 19 | 18 | 18 | 18 | 19 | 18 |
|  | 85 | 88 | 08 | 86 | 98 | 89 | 00 | 75 |
| 4 | 18 | 18 | 19 | 19 | 19 | 18 | 18 | 18 |
|  | 87 | 99 | 07 | 00 | 09 | 98 | 70 | 80 |
| 5 | 18 | 18 | 18 | 18 | 19 | 19 | 18 | 18 |
|  | 75 | 88 | 95 | 96 | 00 | 07 | 95 | 70 |
| 6 | 18 | 18 | 19 | 18 | 18 | 18 | 19 | 18 |
|  | 81 | 98 | 15 | 98 | 89 | 97 | 00 | 90 |
| 7 | 18 | 18 | 18 | 18 | 18 | 19 | 18 | 18 |
|  | 81 | 73 | 86 | 93 | 96 | 22 | 81 | 72 |
| 8 | 18 | 19 | 18 | 19 | 18 | 19 | 18 | 18 |
|  | 80 | 00 | 97 | 04 | 82 | 30 | 80 | 92 |
| 9 | 18 | 18 | 19 | 18 | 19 | 19 | 19 | 19 |


|  | 70 | 93 | 03 | 95 | 08 | 15 | 08 | 04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 18 | 18 | 18 | 19 | 19 | 18 | 18 | 18 |
|  | 90 | 88 | 96 | 11 | 13 | 86 | 97 | 82 |
| 11 | 18 | 19 | 19 | 19 | 19 | 18 | 18 | 19 |
|  | 84 | 00 | 06 | 02 | 22 | 94 | 15 | 09 |
| 12 | 18 | 19 | 18 | 19 | 19 | 19 | 19 | 18 |
|  | 80 | 03 | 74 | 04 | 23 | 30 | 01 | 90 |
| 13 | 18 | 18 | 18 | 19 | 18 | 18 | 18 | 19 |
|  | 72 | 78 | 90 | 05 | 88 | 80 | 90 | 06 |
| 14 | 18 | 18 | 19 | 19 | 18 | 19 | 19 | 18 |
|  | 90 | 99 | 00 | 02 | 96 | 03 | 04 | 78 |
| 15 | 19 | 19 | 18 | 19 | 19 | 19 | 18 | 18 |
|  | 04 | 00 | 92 | 05 | 24 | 00 | 80 | 72 |
| 16 | 18 | 18 | 19 | 19 | 18 | 19 | 18 | 19 |
|  | 85 | 91 | 16 | 00 | 89 | 20 | 85 | 07 |
| 17 | 18 | 19 | 18 | 18 | 18 | 18 | 18 | 19 |
|  | 96 | 02 | 92 | 94 | 80 | 90 | 98 | 01 |
| 18 | 18 | 19 | 18 | 19 | 19 | 19 | 19 | 18 |
|  | 80 | 01 | 94 | 05 | 07 | 03 | 20 | 89 |
| 19 | 18 | 19 | 18 | 18 | 19 | 18 | 19 | 18 |
|  | 60 | 08 | 94 | 85 | 12 | 88 | 04 | 86 |
| 20 | 18 | 18 | 18 | 19 | 19 | 18 | 18 | 18 |
|  | 70 | 84 | 86 | 00 | 15 | 89 | 94 | 82 |
| 21 | 18 | 18 | 19 | 19 | 19 | 18 | 18 | 18 |
|  | 96 | 78 | 05 | 03 | 03 | 87 | 80 | 94 |
| 22 | 18 | 18 | 18 | 18 | 19 | 18 | 18 | 18 |
|  | 75 | 75 | 76 | 99 | 12 | 86 | 90 | 98 |
| 23 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 19 |
|  | 90 | 95 | 87 | 89 | 88 | 91 | 90 | 14 |
| 24 | 18 | 18 | 18 | 18 | 18 | 19 | 19 | 18 |
|  | 84 | 98 | 96 | 87 | 96 | 05 | 00 | 77 |
| 25 | 18 | 18 | 19 | 19 | 18 | 19 | 18 | 19 |
|  | 90 | 94 | 08 | 10 | 97 | 01 | 98 | 31 |
| 26 | 18 | 19 | 19 | 19 | 18 | 18 | 19 | 19 |
|  | 95 | 08 | 07 | 09 | 92 | 90 | 05 | 09 |
| 27 | 19 | 19 | 19 | 19 | 19 | 19 | 18 | 19 |
|  | 00 | 11 | 10 | 08 | 07 | 01 | 87 | 51 |
| 28 | 18 | 18 | 19 | 18 | 18 | 18 | 18 | 18 |
|  | 90 | 98 | 00 | 89 | 79 | 94 | 90 | 94 |
| 29 | 18 | 18 | 19 | 19 | 18 | 19 | 19 | 19 |
|  | 75 | 78 | 01 | 02 | 97 | 20 | 04 | 10 |
| 30 | 18 | 19 | 18 | 19 | 19 | 19 | 19 | 19 |
|  | 76 | 08 | 97 | 02 | 30 | 10 | 09 | 15 |
| 31 | 18 | 19 | 18 | 18 | 18 | 18 | 18 | 19 |
|  | 72 | 22 | 94 | 97 | 90 | 90 | 94 | 03 |
| 32 | 18 | 19 | 19 | 18 | 18 | 18 | 18 | 19 |
|  | 83 | 03 | 04 | 75 | 89 | 90 | 87 | 17 |
| 33 | 19 | 18 | 19 | 18 | 19 | 19 | 19 | 19 |
|  | 04 | 83 | 07 | 98 | 20 | 00 | 04 | 15 |
| 34 | 18 | 18 | 18 | 18 | 18 | 18 | 19 | 18 |
|  | 96 | 91 | 88 | 99 | 85 | 80 | 10 | 89 |
| 35 | 18 | 18 | 19 | 19 | 18 | 18 | 18 | 19 |
|  | 95 | 88 | 07 | 02 | 85 | 86 | 88 | 05 |
| 36 | 18 | 18 | 18 | 19 | 18 | 18 | 18 | 19 |
|  | 96 | 78 | 91 | 08 | 75 | 78 | 90 | 20 |
| 37 | 18 | 18 | 18 | 18 | 19 | 18 | 18 | 19 |

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 07 Issue: 05 | May 2020
www.irjet.net
p-ISSN: 2395-0072

|  | 97 | 93 | 97 | 89 | 08 | 86 | 76 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38 | 18 | 18 | 18 | 19 | 19 | 19 | 19 | 19 |
|  | 92 | 90 | 96 | 08 | 28 | 09 | 04 | 15 |
| 39 | 18 | 18 | 18 | 19 | 19 | 19 | 19 | 19 |
|  | 89 | 99 | 90 | 04 | 03 | 09 | 01 | 15 |
| 40 | 18 | 19 | 19 | 19 | 18 | 19 | 19 | 19 |
|  | 80 | 00 | 07 | 04 | 99 | 15 | 05 | 15 |
| 41 | 18 | 19 | 18 | 18 | 19 | 18 | 18 | 19 |
|  | 85 | 12 | 96 | 99 | 21 | 98 | 90 | 06 |
| 42 | 18 | 18 | 19 | 19 | 19 | 18 | 19 | 19 |
|  | 84 | 78 | 13 | 12 | 18 | 87 | 03 | 06 |
| 43 | 19 | 19 | 19 | 18 | 19 | 18 | 19 | 19 |
|  | 00 | 08 | 10 | 87 | 12 | 91 | 09 | 06 |
| 44 | 18 | 18 | 19 | 19 | 18 | 19 | 18 | 18 |
|  | 78 | 78 | 03 | 11 | 86 | 30 | 60 | 90 |
| 45 | 18 | 18 | 18 | 18 | 19 | 18 | 18 | 19 |
|  | 72 | 98 | 93 | 94 | 24 | 86 | 96 | 15 |
| 46 | 18 | 19 | 18 | 19 | 19 | 18 | 18 | 18 |
|  | 87 | 02 | 97 | 03 | 13 | 89 | 90 | 86 |
| 47 | 18 | 18 | 19 | 18 | 19 | 19 | 19 | 19 |
|  | 85 | 94 | 17 | 89 | 22 | 21 | 01 | 15 |
| 48 | 18 | 18 | 18 | 19 | 18 | 18 | 19 | 19 |
|  | 86 | 98 | 96 | 10 | 89 | 97 | 03 | 16 |
| 49 | 18 | 18 | 18 | 19 | 18 | 19 | 19 | 19 |
|  | 88 | 88 | 87 | 04 | 82 | 30 | 09 | 11 |
| 50 | 18 | 19 | 18 | 19 | 19 | 18 | 18 | 18 |
|  | 92 | 00 | 91 | 04 | 01 | 95 | 75 | 89 |
| 51 | 18 | 18 | 18 | 19 | 18 | 18 | 19 | 19 |
|  | 85 | 78 | 96 | 10 | 93 | 96 | 10 | 00 |
| 52 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 18 |
|  | 00 | 05 | 15 | 04 | 13 | 20 | 15 | 89 |
| 53 | 19 | 18 | 19 | 19 | 18 | 18 | 18 | 19 |
|  | 04 | 97 | 07 | 01 | 76 | 70 | 75 | 20 |
| 54 | 19 | 19 | 19 | 19 | 18 | 18 | 19 | 19 |
|  | 09 | 02 | 07 | 05 | 92 | 90 | 05 | 26 |
| 55 | 18 | 18 | 18 | 19 | 19 | 18 | 19 | 19 |
|  | 40 | 88 | 91 | 01 | 10 | 97 | 20 | 01 |
| 56 | 18 | 18 | 18 | 19 | 18 | 19 | 19 | 19 |
|  | 80 | 83 | 96 | 16 | 87 | 20 | 30 | 00 |
| 57 | 18 | 19 | 18 | 19 | 18 | 19 | 19 | 18 |
|  | 94 | 10 | 96 | 17 | 80 | 00 | 01 | 88 |
| 58 | 18 | 18 | 19 | 19 | 19 | 18 | 18 | 19 |
|  | 95 | 30 | 10 | 02 | 05 | 95 | 80 | 06 |
| 59 | 19 | 19 | 19 | 19 | 19 | 18 | 19 | 19 |
|  | 04 | 06 | 06 | 04 | 01 | 81 | 08 | 15 |
| 60 | 18 | 19 | 19 | 18 | 18 | 18 | 18 | 18 |
|  | 85 | 05 | 09 | 98 | 89 | 87 | 86 | 99 |

## 3. RESULTS \& DISCUSSION

As per the plan, the package weight data is collected for 8 doffs on a machine with 60 heads. The nominal count was $41.5^{\text {s }}$ and the length set was 133521 meters, to get 1890 grams net weight of yarn on package.

Chart 1 shows the variation in average package weight doff wise.


## Chart -1: Doff to doff weight variation in grams

The Chart 2 shows Doff to doff wise variation in \% R. H.


## Chart -2: Doff to doff wise variation in \% R. H.

From statistical analysis, it is found that, the doff to doff variation in package weight is significant but head to head variation is not significant.

The reasons for the doff to doff variation may be due to following:

1) Because of variation in back process i.e. count $\mathrm{CV} \%$. The count CV\% of ring bobbin is in range of 1.62 to 1.66 this may be the one of the reason for weight variation.
2) Relative humidity also affects the variation in yarn package weight. If $\mathrm{RH} \%$ is less, then at that time package weight is considerably less and if RH\% is more, then weight increase in package is found, so it is one of the major reasons for weight variation.
3) Empty package weight is in range of 52 to 59 grams and the average of 20 empty package weight is 54.82 gram, which varies with CV\% of $3.13 \%$. It may also have some effect in package weight variation.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 07 Issue: 05 | May 2020
www.irjet.net
p-ISSN: 2395-0072

Table 1 - Two way ANOVA without replication

| Source <br> of <br> Variatio <br> $n$ | SS | $d f$ | $M S$ | $F$ | $P$ - <br> value | F crit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Rows | 1280 <br> 2.62 | 59 | 216.9 <br> 936 | 1.215 <br> 912 | 0.143 <br> 373 | 1.353 <br> 853 |
| Column <br> s | 1158 <br> 1.71 | 7 | 1654. | 9.271 <br> 071 | $1.13 \mathrm{E}-$ <br> 10 | 2.031 <br> 756 |
| Error | 7370 | 41 <br> 4.66 | 178.4 <br> 3 |  |  |  |
| Total | 9808 <br> 9 | 47 <br> 9 |  |  |  |  |

## 4. CONCLUSIONS:

From the statistical analysis and discussion on collected data obtained in this study, it lead to the following conclusions:

- Head to head weight variation in the package is not statistically significant.
- Doff to doff weight variation in package is significant as per statistical analysis.

This may be attributed to:
I) $\quad \mathrm{RH} \%$.
II) Count CV\% of ring yarn.
III) Empty package weight variation

Thus to minimize weight variation it is very much essential to control the \% R. H. of the department, \& efforts must be taken to control the CV\% of ring yarn.

## ACKNOWLEDGEMENT

The authors are thankful to the management of DKTE's Textile \& Engineering Institute, Ichalkaranji, for permitting to publish this research work. They are also thankful to Shirol Magasvargiya Co-operative Spinning Mills for carrying out this study in their organization. Thanks are also due to Prof. J. R. Nagla for rendering help in analyzing the results.

## REFERENCES:

[1] Dr.H.R.Sheikh, "Control of weight of yarn cones realistically to achieve market success", Pakistan Textile journal July2019.
[2] Arup Ranjan Mukhopadhya and Sumik Ray, "Reduction of yarn packing Defects using six sigma methods". A case study, Online Content 15 feb 2007, Quality Engineering, 18:2,189-206.
[3] Gungor Durur "Cross Winding of yarn packages," PhD Thesis, School of textile industries, the University of Leeds, July2000.
[4] Milind Koranne, "Fundamentals of yarn winding" by Woodhead Publishing India pvt. Itd. New Delhi, 2013.
[5] R. Fettahov, E. Tomruk, and S. Palamutcu, "Analysing the effect of tension to winding density and the relationship between winding density and yarn package hardness", International Conference of applied research in Textile, CIRAT-3, 2008, Sousse, Tunisia.

## BIOGRAPHIES


S. B. Mhetre, Associate Professor, Textile \& Engg. Institute, Ichalkaranji- 416115, INDIA.

