
 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 05 | MAY 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4853

Enabling Generic, Verifiable and Secure Data Search in Cloud Services

Mr.T.A. Mohanaprakash M.E, Ph.D1, S.M.Hajee ijas mohamed2, B.Naresh kumar3, M.Naresh4

1ASSOCIATE PROFESSOR, DEPT OF CSE, PANIMALAR INSTITUTE OF TECHNOLOGY, CHENNAI
2B.E STUDENT, DEPT OF CSE, PANIMALAR INSTITUTE OF TECHNOLGY, CHENNAI
3B.E STUDENT, DEPT OF CSE, PANIMALAR INSTITUTE OF TECHNOLGY, CHENNAI
4B.E STUDENT, DEPT OF CSE, PANIMALAR INSTITUTE OF TECHNOLGY, CHENNAI

---***--
Abstract – Cloud storage allows users to retrieve and
share their data conveniently with well understood
benefits, such as on demand access, reduced data
maintenance cost, and service elasticity. Meanwhile,
cloud storage also brings serious data privacy issues,
i.e., the disclosure of private information. In order, to
ensure data privacy without losing data usability, a
cryptographic notion named searchable symmetric
encryption (SSE), has been proposed. By using SSE,
users can encrypt their data before uploading to cloud
services, and cloud services can directly operate and
search over encrypted data, which ensures data
privacy. Searchable Symmetric encryption has been
widely used in a cloud storage. It allows cloud services

to directly search over the encrypted data. Most
verifiable SSE scheme only enable verifiability for single
user model. So, we propose a GSSE, a generic verifiable
SSE framework to ensure search result integrity and
freshness across multiple users GSSE provides
verifiability for any SSE scheme and it supports data
updates. It ensures both the freshness and integrity of
search results across multiple users and data owner.

Keywords – Enabling generic, searchable
symmetric encryption (SSE), Encryption, Cloud
services

I. INTRODUCTION

In cloud computing data were easily accessed
anywhere and portable, though it is very scalable and
ease of access it creates more security issues and
threats. Even though it contains a encryption system
privacy issues occurs. To avoid such consequences, it
proposes a strong encryption techniques using
generic technology to protect privacy measures as
strong as possible. Cloud storage allows users to
retrieve and share their data conveniently with well
understood benefits, such as on demand access,
reduced data maintenance cost, and service elasticity.
Meanwhile, cloud storage also brings serious data
privacy issues, i.e., the disclosure of private
information. In order to ensure data privacy without
losing data usability, a cryptographic notion named
searchable symmetric encryption (SSE), has been
proposed. By using SSE, users can encrypt their data
before uploading to cloud services, and cloud services
can directly operate and search over encrypted data,
which ensures data privacy. Due to the increasing
popularity of cloud computing, more and more Data
owners are motivated to outsource their data to
cloud servers for great convenience and reduced cost
in data management. Data owners offer services to a
large number of businesses and companies, they stick
to high security standards to improve data security

by following a layered approach that includes data
encryption, key management, strong access controls,
and security intelligence. The cloud server executes
the query and returns the encrypted documents with
an additional proof according to the token generated
by Data owners. The Data users will receive the result
with the corresponding proof so they can verify the
correctness and decrypt encrypted documents after
the verification is correct.

II. EXISTING SYSTEM

The existing VSSE (Verifiable Searchable Symmetric
Encryption) schemes exhibit very limited
applicability, like only supporting static database,

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 05 | MAY 2020 WWW.IRJET.NET P-ISSN: 2395-0072

demanding specific SSE constructions, or only
working within the single-user model. There is a
setup phase that produces an encrypted index for a
selected collection of documents and then phase, no
additions or deletions of documents are often
supported. It has some disadvantages such as

• Low search Efficiency
• The search delay of the scheme is proportional to
the size of the database.
• It is not suitable for the large scale databases.
• Doesn’t support verification upon file update.
• Data Integrity attacks.

III. PROPOSED SYSTEM.

Generic Search Symmetric Encryption (GSSE), which
provides verifiability for any SSE schemes and
further supports data updates. To generically support
result verification, we first decouple the proof index
in GSSE from SSE. The data owner first extracts the
keywords of each document and builds a keyword
index. He/she encrypts the documents as well as the
keyword index. The data owner outsources the
encrypted documents as well as the encrypted
keyword index to the cloud. The Data user get the
each result, the proof and the public verification key,
they itself or others can verify the freshness,
authenticity, and completeness of the search result
even Without decrypting them.We also develop a
time stamp chain for data freshness maintenance
across multiple users.

IV. MODULE DESCRIPTION

1. Registration
 It is a process of enrolling or being enrolled into the
cloud. To utilize the cloud documents, every Data
Owner and Data User should enroll. During this
process your basic information like email, contacts
etc., are collected and stored within the Cloud. The
cloud id for a specific user will get automatically
generated during the registration.

2. Data owner
Data Owner extracts the keywords of each document
and also builds a keyword Index. It encrypts the
documents and the keyword Index using a key and
outsources in Cloud. Data Owner provides the Public
Verification Key and Proof Index to the Data User via
Cloud for document verification. It is used to only

authorized person to add, modify, or delete the
document(s) from the cloud..

3. Data user
 Data User send a request to the cloud server. After
request granted from the Cloud, the Data User
receiving the Public Verification Key from the Cloud
generated by Data Owner. The Data User now decrypt
and download the encrypted documents, after
verifying with the Public Verification Key. After
receiving a verification from cloud, the data user will
download the file within a particular time limit.

4. Cloud Service Provider
 The Cloud Service Provider can view all the uploaded
and downloaded documents in the Cloud. The CSP
receives the document request from the Data User,
verifies the authentication before granting
permission. Then the CSP executes the query and
returns the encrypted document consistent with the
search token. And also returns a further proof with
the document, to verify the search result.

V.EVALUATION

In order to demonstrate the
feasibility of GSSE, we have
implemented it by using Crypto++
5.6.5. The prototype is written by
about 2200 lines of code. We use
128-bit AES-CBC to encrypt the
authenticators and sign it with RSA
signature. We implement two
random-oracles with HMAC-

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4854

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 05 | MAY 2020 WWW.IRJET.NET P-ISSN: 2395-0072

SHA256 and the hash function is an implementation
of SHA3-256 and the incremental hash function is
MuHash. Our experiments were performed by using a
machine with single thread on an Intel Core i5 2.5GHz
processor with 4G RAM. We used the Enron email
dataset [43] in our experiments. The used part of the
dataset [43] is between “allen-p” and “kaminski-v”.
We extract document-keyword pairs from the dataset
and construct our plaintext inverted index by using a
python script. Note that the delays of extracting
keywords from files are not included in our
evaluation, since keyword extraction is independent
with GSSE. We first measure the overheads of the
algorithms proposed and then compare GSSE with a
well-known SSE scheme [11] to demonstrate the
small extra overhead introduced by result
verification.

First, we measure the delays of the Init algorithm as
shown in Fig. 5, which include the building of the
proof index and the authenticator. All the delays and
the subsequent measurements are the average
results with ten runs of experiments. Note that the
cost of building the authenticator is negligible. The
delays of generating the proof index are proportional
to the size of the document-keyword pairs, since
GSSE performs the same number of insertions to the
number of the document-keyword pairs. Overall, the
initialization consumes around 25 seconds where the
documents include four million keywords, which is
acceptable. The update delays are decided by the size
of the database that is measured by the number of
keywords. Strictly speaking, the delays are directly
related to the number of the layers in MPT. In order
to show the relationship between the update delays
and the database size, we use various numbers of
keywords to measure the delays. Since the number of
keywords varies from each file, we use throughput to
measure the number of keyword-document pairs that
can be updated per second (see Fig. 6). We observe
that the throughput of adding and deletion
operations are almost the same. The throughput
decreases when the size of the database grows. They
can support 110,000 updates per second with one
million keywords database. Similarly, we observe
that the bandwidth overhead incurred by update
token is decided by the number of keywords
contained in the file. Each update token takes about
32 bytes, which is acceptable as well. As shown in Fig.
7, the server can perform about 43,000 prove
operations per second even when the size of the
database is one million keywords, which indicates the
server can simultaneously support 43,000 concurrent

queries submitted by
users. Note that this
experiment only measures
the cost of generating the
proofs, not including the
waiting time for the
authenticator in the
checkpoint. The
communication overhead
incurred by proof delivery is only a few kilobytes,
which is decided by the number of layers in MPT, and
gradually increases as the database grows (see Fig. 7
and Fig. 8). We measure the storage cost MPT as
shown in Fig. 9. If we use a database with 1,000,000
keywords, the storage overhead is about 82MB.
Compared with the size of the original dataset itself,
590 MB, the overhead is relatively small. Note that, if
a data owner stores various media types of data set
(e.g., images or music) with fewer keywords or

attributes, the storage overhead of MPT will further
reduce to be practically negligible, compared with the
size of the data set itself. The performance of
Generate algorithm performed by data users is
presented in Fig. 10. We observe that the measured
delays of generating root are all within 0.1
milliseconds and are acceptable. In Fig. 11, we
evaluate the verification delays in data users. Note
that an entire verification delay includes the delay of
waiting for a checkpoint and the delay of executing
the Check and the Generate algorithms. Since the
execution delay of the Generate algorithm is
relatively stable, around 0.1 milliseconds, we do not
plot it in Fig. 11. Here, _ is the update frequency of the
data owner. We assume that the time that a user
initiates a query is uniformly distributed during an
update interval, and then the user’s waiting delays
are also uniformly distributed. Therefore, the
expected delay is half of the update interval and the
verification delays are dominated by the waiting
delays. The execution delay of the Check algorithm is
negligible and is proportional to the update interval,
which is mainly incurred by verifying the signature

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4855

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 05 | MAY 2020 WWW.IRJET.NET P-ISSN: 2395-0072

and decrypting authenticators. Kindly note that in
above measurement, we do not take into account the
network transmission and propagation delays, as
they vary in different specific network contexts and
do not reflect the essential extra cost directly
introduced by our verification design. We do,
however, report the communication overhead in
terms of the message size, as shown in Fig. 12. In a
later experiment, we will also show that we can set an
update interval so as to make a trade-off between
verification delays and communication overhead. Fig.
12 shows the bandwidth costs for authenticator
update. Here, the size of the first authenticator in
each update interval is around 112 bytes, which
includes 32 bytes of the root of MPT, 8 bytes of the
timestamp, an 8 bytes AES-CBC extension and a 128
bytes RSA signature. Overall, the bandwidth of the
authenticator includes two part: the overhead
introduced by the fixed update time point and the
overhead introduced by data update. We can observe
that the bandwidth cost increases to about 2KB per
second when the update interval decrease to zero,
this is introduced by the fixed update time point
which is inversely proportional to the bandwidth
overhead. Moreover, the bandwidth gradually
increases when the update interval becomes too long.
This overhead is introduced by the length of the
authenticator, because as the update interval grows,
the length of the authenticator becomes larger.
Overall, the cost should be acceptable to achieve
GSSE. According to the results, in order to make a
decent tradeoff between verification delays and
bandwidth costs, we suggest choosing an update
interval between 500 milliseconds and 1,500
milliseconds.

VI. CONCLUSION

A dynamically verifiable SSE scheme, which can be
applied to any SSE schemes with a three-party model
and does not require modifications on them. By
building authenticators and a proof index, GSSE

provides efficient search result verification, while
preventing data freshness attacks and data integrity
attacks in SSE

REFERENCES

 S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Outsourced symmetric private
information retrieval,” in Proceedings of the
2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp.
875–888.

 S. Kamara, C. Papamanthou, and T. Roeder,
“Dynamic searchable Symmetric encryption,”
in Proceedings of the 2012 ACM conference
on Computer and communications security.
ACM, 2012, pp. 965–976.

 D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.
Rosu, and M. Steiner, “Highly-scalable
searchable symmetric encryption with
support for Boolean queries,” in Advances in
Cryptology-CRYPTO 2013. Springer, 2013, pp.
353–373.

 M. Naveed, M. Prabhakaran, and C. A. Gunter,
“Dynamic searchable encryption via blind
storage.” in Proceedings of the IEEE
Symposium on Security and Privacy, San Jose,
CA, May, 2014.

 C. Wang, N. Cao, J. Li, K. Ren, and W. Lou,
“Secure rankedkeyword search over
encrypted cloud data,” in Proc. of
ICDCS’10,2010.

 P. Mell and T. Grance, “Draft nist working
definition of cloudcomputing,” Referenced on
Jan. 23rd, 2010 Online at
http://csrc.nist.gov/groups/SNS/cloud-
computing/index.html, 2010.

 [M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud
computing,” University of California, Berkeley,
Tech. Rep. UCBEECS-2009-28, Feb 2009.

 Cloud Security Alliance, “Security guidance
for critical areas of focus in cloud computing,”
2009, http://www.cloudsecurityalliance.org.

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4856

