Coefficient Bounds for Subclasses of Bi-univalent Functions Defined by (p,q)-Derivatives

Vijaya Shetty ${ }^{1}$
Department of Mathematics, N I E Institute of Technology, Mysore, India
Raju D S ${ }^{2}$
Department of Mathematics, N I E Institute of Technology, Mysore, India

$\boldsymbol{A} \boldsymbol{b s t r a c t}$ - This paper introduces two new subclasses $\boldsymbol{B}_{\Sigma}^{p, q}\left(\lambda_{,} \boldsymbol{\mu}_{,} \boldsymbol{\alpha}\right)$ and $\boldsymbol{B}_{\Sigma}^{p, q}\left[\lambda_{s} \boldsymbol{\mu}_{,} \gamma\right]$ of bi-univalent functions by using (p, q)-derivatives and determine the bounds for first two coefficients for functions in these subclasses.

Keywords- univalent function; bi-univalent function; coefficient bounds; (p,q)-derivative; q-derivative

1. Introduction

Let denote the class of functions f given by,

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{m} a_{m} z^{m} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\{=\{z:|z|<1\}$. Furthermore, let \diamond represent the class of all functions $f \in \mathbb{b}$ in the form (1) which are univalent in \ddagger. The Koebe one-quarter theorem [5] ensures that the image of \ddagger under every function $f \in$ \bullet contains a disk of radius $1 / 4$. Thus, every function $f \in \bullet$ has an inverse f^{-1} satisfying $f^{-1}(f(z))=z(z \in \mathscr{U})$ and $\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right)$.

A function $f \in{ }^{\bullet}$ is said to be bi-univalent in \ddagger if both f and its inverse f^{-1} are univalent in ${ }^{\text {亿 }}$. Let Σ denote the class of bi-univalent functions defined in \ddagger. Since $f \in \Sigma$ has the Taylor-Maclaurin series expansion given by (1), its inverse f^{-1} has the expansion

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{a}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}\right)+\cdots \tag{2}
\end{equation*}
$$

Many authors introduced and investigated different subclasses of bi-univalent functions and obtained estimates for the initial coefficients for functions in these subclasses (see [1, 3, 6, 7, 11, 15, 14, 12, 17]).

In Geometric Function Theory, different subclasses of the normalized analytic function class | |
| :--- |
| h have been analysed from | various viewpoints. The q-calculus and the fractional q-calculus provide important tools that have been used for the investigation of different subclasses of $\begin{gathered}\text { e. }\end{gathered}$

To begin with, we define the fractional (p, q)-derivative (see [4, 10]) for a complex function $f(z)$ as follows:
Definition 1. For $0<q<p \leq 1$, the (p, q)-derivative of a complex-valued function $f(z)$ is given by

$$
d_{p, q} f(z)= \begin{cases}\frac{f(p z)-f(q z)}{(p-q) z} & \text { for } z \neq 0 \tag{3}\\ f^{\prime}(0) & \text { for } z=0\end{cases}
$$

From the above definition, it is clear that

$$
\begin{equation*}
d_{p, q}\left(z^{m}\right)=[m]_{p, q} z^{m-1} x \tag{4}
\end{equation*}
$$

where
$[m]_{p q}=\frac{p^{m}-q^{m}}{p-q}$
Thus, for $f \in$ given by (1), we have

$$
\begin{equation*}
d_{p, q} f(z)=1+\sum_{m=2}^{\infty}[m]_{p q q} a_{m} z^{m-1} \tag{6}
\end{equation*}
$$

For $p=1$, we obtain the q-derivative of $f(z)$ (see [9]) given by
$d_{q} f(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z} & \text { for } z \neq 0 \\ f^{\prime}(0) & \text { for } z=0\end{cases}$
and thus, for $f \in \mathbb{B}$ given by (1), we have $d_{q} f(z)=1+\sum_{m=2}^{\infty}[m]_{q} a_{m} z^{m-1}$ where $[m]_{q}=\frac{1-q^{m}}{1-q}$.
Also, for $f \in \sharp$, we have $\lim _{q \rightarrow 1^{-}} d_{q} f(z)=f^{\prime}(z)$.
This paper introduces two new subclasses of bi-univalent functions defined by using (p, q)-derivatives and we determine bounds for the initial coefficients $\left\|a_{2}\right\|$ and $\left\|a_{a}\right\|$ for functions in these subclasses. For this purpose, we use the following lemma:

Lemma 2. [5] If $p(z)=1+p_{1} z+p_{2} z^{2}+p_{a} z^{a}+\cdots$ is analytic in Y such that $R e p(z)>0$, then $\left|p_{k}\right| \leq 2$, for each k.
2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $B_{\Sigma}^{p / q}\left(\lambda_{,}, \mu, \alpha\right)$.

In this section, we introduce the subclass $B_{\Sigma}^{p, q}\left(\lambda_{,}, \mu, \alpha\right)$ of the bi-univalent function class Σ and obtain the bounds for $\left\|a_{2}\right\|$ and $\left\|a_{a}\right\|$ for the functions in this subclass.
Definition 3. A function $f \in \Sigma$ given by (1) is said to be in the class $B_{\Sigma}^{p, q}\left(\lambda_{0}, \mu, \alpha\right)$ where $0<q<p \leq 1$,
$\lambda \geq 1, \mu \geq 0,0<\alpha \leq 1$ if the following conditions are satisfied:
$\left|\arg \left\{(1-\lambda) \frac{f(z)}{z}+\lambda d_{p, q} f(z)+\mu z\left(d_{p, q} f(z)\right)\right\}\right|<\frac{\pi \alpha}{2} \quad(z \in \mathcal{U})$
and

$$
\begin{equation*}
\left.\left\lvert\, \arg \left\{(1-\lambda) \frac{g(w)}{w}+\lambda d_{p, q} g(w)+\mu w\left(d_{p, q} g(w)\right)\right)\right.\right\} \left\lvert\,<\frac{\pi \alpha}{2} \quad(w \in \mathscr{U})\right. \tag{8}
\end{equation*}
$$

where $2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\mu m+1} \leq 1$ and g is the extension of f^{-1} to Y..
Now, we obtain the bounds for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the function class $B_{\Sigma}^{p, q}\left(\lambda_{2} \mu, a\right)$.
Theorem 4. Let $f(z)$ given by (1) be in the class $B_{\bar{p}}^{p, q}\left(\lambda_{s}, \mu, \alpha\right)$. Then
$\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{\left|1-\lambda+(\lambda+\mu)[21]_{p, q}\right|}, \frac{2 \alpha}{\sqrt{\left.\left.\mid 2 \alpha[1-\lambda+(\lambda+2 \mu)[2]]_{p, q]}\right]+(1-\alpha)[1-\lambda+(\lambda+p)[2]]_{p, q]^{2}}\right]^{2}}}\right\}$
and

Proof. Let $f \in B_{\Sigma}^{p, q}(\lambda, \mu, \alpha)$. Then, from (7) and (8), we have

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda d_{p, q} f(z)+\mu z\left(d_{p, q} f(z)\right)^{n}=[k(z)]^{\alpha} \quad(z \in \mathscr{U}) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda d_{p, q} g(w)+\mu w\left(d_{p, q} g(w)\right)^{v}=[h(w)]^{\alpha} \quad(w \in U) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
k(z)=1+k_{1} z+k_{2} z^{2}+k_{a} z^{a}+\cdots \quad(z \in \mathcal{U}) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
h(w)=1+h_{1} w+h_{2} w^{2}+h_{a} w^{a}+\cdots \quad(w \in \mathcal{U}) \tag{14}
\end{equation*}
$$

satisfying the conditions $\operatorname{Re} k(z)>0$ and $\operatorname{Re} h(w)>0$.
Now, equating the coefficients of like terms in (11) and (12), we get

$$
\begin{equation*}
\left\{1-\lambda+(\lambda+\mu)[2]_{p, q}\right\} a_{2}=\alpha k_{1} \tag{15}
\end{equation*}
$$

$\left\{1-\lambda+(\lambda+2 \mu)[3]_{p, q}\right\} a_{a}=\alpha k_{2}+\frac{\alpha(\alpha-1)}{2} k_{1}^{2}$
$-\left\{1-\lambda+(\lambda+\mu)[2]_{p, q}\right\} a_{2}=\alpha h_{1}$
and
$\left\{1-\lambda+(\lambda+2 \mu)[3]_{p, q}\right\}\left(2 a_{2}^{2}-a_{a}\right)=\alpha h_{2}+\frac{\alpha[\alpha-1)}{2} h_{1}^{2}$

From (15) and (17), we get

$$
\begin{equation*}
h_{1}=-k_{1} \tag{19}
\end{equation*}
$$

And

$$
\begin{equation*}
2\left\{1-\lambda+(\lambda+\mu)[2]_{p, q}\right\}^{2} a_{2}^{2}=\alpha^{2}\left(k_{1}^{2}+h_{1}^{2}\right) \tag{20}
\end{equation*}
$$

Now, from (16), (18) and (20), we obtain
Thus, we have
$2\left\{1-\lambda+(\lambda+2 \mu)[3]_{p, q}\right\} a_{2}^{2}=\alpha\left(k_{2}+h_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(k_{1}^{2}+h_{1}^{2}\right)$

$$
=\alpha\left(k_{2}+h_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left\{1-\lambda+(\lambda+\mu)[2]_{p, q}\right\}^{2} a_{2}^{2}
$$

$a_{2}^{2}=\frac{\alpha^{2}\left(k_{2}+\hat{h}_{2}\right)}{\left.2 \alpha[1-\lambda+(\lambda+2 \mu)[2]]_{p q}\right]+(1-\alpha)[1-\lambda+(\lambda+\mu)[21] p q]^{2}}$
Now, calculating the absolute values on both sides of (20) and (21) and by using Lemma 2, we get

$$
\left|\alpha_{2}\right|^{2} \leq \frac{\alpha^{2}\left(\|\left. k_{1}\right|^{2}+\left|k_{1}\right|^{2}\right)}{2\left[1-\lambda+(\lambda+\mu)[21 p, q]^{2}\right.} \leq \frac{4 \alpha^{2}}{2[1-\lambda+(\lambda+\mu)[21], q]^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leq \frac{\alpha^{2}\left(| | k_{2}\left|+\left|\hbar_{2}\right|\right)\right.}{\left.\mid 2 \alpha\left[1-\lambda+(\lambda+2 \mu)[2]_{p, q}\right]+(1-\alpha)[1-\lambda+(\lambda+p)[21] p]^{2}\right]} \leq \frac{4 \alpha^{2}}{\left.\left.\mid 2 \alpha[1-\lambda+(\lambda+2 \mu)[2]]_{p q q}\right]+(1-\alpha)[1-\lambda+(\lambda+\mu)[21])^{2}\right]}
$$

from which we obtain (9).
Further, to find the bound on the coefficient $\left\|a_{a}\right\|$, we substract (18) from (16) and use (19) to obtain

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{\alpha\left(k_{2}-k_{2}\right)}{\left.2[1-\lambda+(\lambda+2 \mu)][1]]_{p q}\right]} \tag{22}
\end{equation*}
$$

Substituting for a_{2}^{2} from (20) in (22), we have

$$
\begin{equation*}
\left.a_{a}=\frac{\alpha^{2}\left(k_{1}^{2}+\lambda_{1}^{2}\right)}{2[1-\lambda+(\lambda+\mu)[2]}{ }_{p q 4}\right]^{2}+\frac{\alpha\left(k_{2}-h_{2}\right)}{2\left[1-\lambda+(\lambda+2 p)[12]_{p, q}\right]} \tag{23}
\end{equation*}
$$

Now, by finding the absolute values on both sides of (23) and using Lemma 2, we obtain

which is precisely (10).
Hence the Theorem 4 is proved.
Remark 5. If we put $\lambda=1$ in Definition 3, then the class $B_{\bar{s}}^{p, q}\left(\lambda_{\nu}, \mu, \alpha\right)$ reduces to the class $H_{\sigma_{B}}^{p, q \mu a}$ which was defined and studied by Motamednezhad and Salehian [10].

Thus, from Theorem 4., we obtain the results as follows:
Corollary 6. Let $f(z)$ given by (1) be in the class $H_{\sigma_{B}}^{p, q \mu a}=$ Then
$\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{(1+\mu)[2] p, q}, \frac{2 \alpha}{\sqrt{\left.2 \alpha(1+2 \mu)[2]]_{p, q}+(1-\alpha)(1+\mu)^{2}[21]\right]_{p, q}^{2}}}\right\}$
and
$\left|a_{a}\right| \leq \frac{4 \alpha^{2}}{(1+p)^{2}[2]_{p q}^{2}}+\frac{2 \alpha}{(1+2 \mu)[3]_{p q}}$.
Remark 7. If we put $\lambda=1, p=1$ and let $q \rightarrow 1^{-}$in Definition 3, then the class $B_{\Sigma}^{p, q}\left(\lambda_{0}, \mu, \alpha\right)$ reduces to the class $H_{\Sigma}(\mu, \alpha)$ which was defined and studied by Frasin [6].

Thus, from Theorem 4, we obtain the results as follows:
Corollary 8. Let $f(z)$ given by (1) be in the class $H_{T}(\mu, a)$. Then,
$\left|\alpha_{2}\right| \leq \min \left\{\frac{\alpha}{1+\mu}, \frac{2 \alpha}{\sqrt{2(\alpha+2)+4 \mu(\alpha+\mu-\alpha \mu+2)}}\right\}$
and
$\left|a_{\mathrm{a}}\right| \leq \frac{\alpha^{2}}{(1+\mu)^{2}}+\frac{2 \alpha}{(1+2 \mu)}$.

3. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $B_{\bar{Z}}^{p, q}[\lambda, \mu, \gamma]$

Here we introduce the function class $B_{\bar{\square}}^{p, q}[\lambda, \mu, \gamma]$ using the definition as follows:
Definition 9. A function $f \in \Sigma$ given by (1) is said to be in the class $B_{\Sigma}^{p, q}\left[\lambda_{,} \mu, \gamma\right]$ where $0<q<p \leq 1$,
$\lambda \geq 1, \mu \geq 0,0 \leq \gamma<1$ if the following conditions are satisfied:

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{f(z)}{z}+\lambda d_{p q} f(z)+\mu z\left(d_{p q} f(z)\right)\right\}>\gamma \quad(z \in \mathscr{U}) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{g(w)}{w}+\lambda d_{p q q} g(w)+\mu w\left(d_{p q} g(w)\right) v>\gamma \quad(w \in \mathscr{U})\right. \tag{25}
\end{equation*}
$$

where $2(1-\gamma) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\mu m+1} \leq 1$ and g is the extension of f^{-1} to Y..
Now, we obtain the bounds for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the function class. $B_{\bar{z}}^{p, q}\left[\lambda_{,} \mu, \gamma\right]$.
Theorem 10. Let $f(z)$ given by (1) be in the class $B_{\Sigma}^{p, q}[\lambda, \mu, \gamma]$. Then
$\left|a_{2}\right| \leq \min \left\{\frac{2(1-\gamma)}{\mid 1-\lambda+(\lambda+p)[2]]_{p q} \mid}, \sqrt{\frac{2(1-\gamma)}{\mid 1-\lambda+(\lambda+2 p)[a]]_{p q} \mid}}\right\}$
and

$$
\begin{equation*}
\left|a_{\mathrm{a}}\right| \leq \frac{2(1-\eta)}{\left|1-\lambda+(\lambda+2 \mu)[3]_{p, q}\right|} \tag{27}
\end{equation*}
$$

Proof. Let $f \in B_{I}^{p p q}[\lambda, \mu, \gamma]$. Then, from (24) and (25), we have

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda d_{p, q} f(z)+\mu z\left(d_{p, q} f(z)\right)^{v}=\gamma+(1-\gamma) k(z) \quad(z \in \mathscr{U}) \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda d_{p, q} g(w)+\mu w\left(d_{p, q} g(w)\right)^{v}=\gamma+(1-\gamma) g(w) \quad(w \in \mathcal{U}) \tag{29}
\end{equation*}
$$

where $k(z)$ and $h(w)$ are given by (13) and (14), respectively, with $\operatorname{Re} k(z)>0$ and $R e h(w)>0$.
Now, equating the coefficients of like terms in (28) and (29), we get
$\left\{1-\lambda+(\lambda+\mu)[2]_{p, q}\right\} a_{2}=(1-\gamma) k_{1}$
$\left\{1-\lambda+(\lambda+2 \mu)[3]_{p, q}\right\} a_{a}=(1-\gamma) k_{2}$
$-\left\{1-\lambda+(\lambda+\mu)[2]_{p, q}\right\} a_{2}=(1-\gamma) h_{1}$
and
$\left\{1-\lambda+(\lambda+2 \mu)[3]_{p, q}\right\}\left(2 a_{2}^{2}-a_{a}\right)=(1-\gamma) h_{2}$

From (30) and (32), we get

$$
\begin{equation*}
h_{1}=-k_{1} \tag{34}
\end{equation*}
$$

and
$2\left\{1-\lambda+(\lambda+\mu)[2]_{p, q}\right\}^{2} a_{2}^{2}=(1-\gamma)^{2}\left(k_{1}^{2}+h_{1}^{2}\right)$

Also, from (31) and (33), we get
$2\left\{1-\lambda+(\lambda+2 \mu)[3]_{p, q}\right\} a_{2}^{2}=(1-\gamma)^{2}\left(k_{2}+h_{2}\right)$
Now, by finding the absolute values on both sides of (35) and (36) and using Lemma 2, we get
$\left|a_{2}\right|^{2} \leq \frac{(1-\gamma)^{2}\left(\left|k_{1}\right|^{2}+\left|\hat{h}_{1}\right|^{2}\right)}{2[1-\lambda+(\lambda+\mu)[2] p \cdot q]^{2}} \leq \frac{4(1-\gamma)^{2}}{(1-\lambda+(\lambda+\mu)[21] p \cdot q]^{2}}$
and
from which we obtain (26).
Further, to find the bound on the coefficient $\left\|a_{a}\right\|$, we substract (33) from (31) to get

$$
\begin{equation*}
a_{2}=a_{2}^{2}+\frac{(1-\gamma)\left(k_{2}-k_{2}\right)}{2\left[1-\lambda+(\lambda+2 \mu) \cdot[1]_{p q}\right)} \tag{37}
\end{equation*}
$$

Substituting for a_{2}^{2} from (35) in (37), we have

$$
\begin{equation*}
a_{\mathrm{a}}=\frac{(1-\gamma)^{2}\left(k_{1}^{2}+h_{1}^{2}\right)}{2[1-\lambda+(\lambda+\mu)[2] p q]^{2}}+\frac{(1-\gamma)\left(k_{2}-h_{2}\right)}{\left.2[1-\lambda+(\lambda+2 \mu)[\lambda]]_{p, q}\right)} \tag{38}
\end{equation*}
$$

Also, by substituting the value of a_{2}^{2} from (36) in (37), we have
$a_{2}=\frac{(1-\gamma) k_{2}}{1-\lambda+(\lambda+2 \mu)[1]_{p \cdot 4}}$

Now, by finding the absolute values on both sides of (38) and (39) and using Lemma 2, we obtain

and
$\left|a_{a}\right| \leq \frac{(1-p)\left|k_{2}\right|}{\mid 1-\lambda+(\lambda+2 p)[3]]_{p q-} \mid} \leq \frac{2(1-p)}{\left.\mid 1-\lambda+(\lambda+2 \mu)[3]_{p q q}\right]}$
from which we obtain (27).

Hence the Theorem is proved.
Remark 11. If we put $\lambda=1$ in Definition 9, then the class $B_{\bar{\Sigma}}^{p, q}\left[\lambda_{,}, \mu, \gamma\right]$ reduces to the class $H_{\sigma_{B}}^{p, q \mu}(\gamma)$ which was defined and studied by Motamednezhad and Salehian [10].

Thus, from Theorem 10, we obtain the result as follows:
Corollary 12. Let $f(z)$ given by (1) be in the class $H_{\sigma_{\bar{z}}}^{p / q \mu}(\gamma)=$ Then
$\left|a_{2}\right| \leq \min \left\{\frac{2(1-\gamma)}{(1+p)[2]_{p q}} \cdot \sqrt{\left.\frac{2(1-\gamma)}{(1+2 \mu)[[1]}\right]}\right\}$
and
$\left|a_{\mathrm{a}}\right| \leq \frac{2(1-p)}{(1+2 \mu)[3] p q}$.
Remark 13. If we put $\lambda=1, p=1$ and let $q \rightarrow 1^{-}$in Definition 9 , then the class $B_{\nabla}^{p, q}[\lambda, \mu, \gamma]$ reduces to the class $H_{\pi}^{\mu}(\gamma)$ which was defined and studied by Frasin [6].

Thus, from Theorem 10, we obtain the result as follows:
Corollary 14. Let $f(z)$ given by (1.1) be in the class $H_{\Gamma}^{\mu}(\gamma)$. Then,
$\left|a_{2}\right| \leq \min \left\{\frac{1-\gamma}{1+\mu}, \sqrt{\frac{2(1-\gamma)}{2(1+2 \mu)}}\right\}$
and
$\left|a_{3}\right| \leq \frac{2(1-\gamma)}{3(1+2 \mu)}$.

References

[1] D. A. Brannan and T.S. Taha, "On some classes of bi-univalent functions," Studia. Univ. Babes-Bolyai Math. 31(2) (1986) pp.70-77.
[2] S. Bulut, "Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator,"Commun. Fac. Sci. Univ. Ank.Ser. Al Math. Stat., 66(1) (2015) pp.108-114.
[3] M. Caglar, H.Orhan and N.Yagmur, "Coefficient bounds for new subclasses of bi-univalent functions,"Filomat. 27(7) (2013) pp.1165-1171.
[4] R.Chakrabarti and R.Jagannathan, "A (p; q)-oscillator realization of two-parameter quantum algebras," J. Phys. A,24 (1991) pp. 711-718.
[5] P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

International Conference on Recent Trends in Science \& Technology-2020 (ICRTST - 2020)

Organised by: ATME College of Engineering, Mysuru, INDIA
[6] B.A.Frasin, "Coefficient bounds for certain classes of bi-univalent functions,"Hacettepe Journal of Mathematics and Statistics, 43(3)(2014) pp. 383-389.
[7] T.Hayami and S.Owa, "Coefficient bounds for bi-univalent functions," Pan Amer. Math. J. 22(4) (2012) pp.15-26.
[8] F.H. Jackson, "On q-definite integrals," Quarterly J. Pure Appl. Math. 41 (1910) pp.193-203.
[9] F.H.Jackson, "On q-functions and a certain difference operator," Transactions of the Royal Society of Edinburgh, 46 (1908) pp.253-281
[10] A. Motamednezhad ands. Salehian , " New subclass of bi-univalent functions by (p; q)-derivative operator," Honam Math. J. 41(2) (2019) pp.381-390.
[11] H.M. Srivastava, S. Bulut , M.Caglar and N.Yagmur, "Coefficient estimates for a general subclass of analytic and biunivalent functions," Filomat 27 (5) (2013) pp. 831-842.
[12] H.M.Srivastava, S. Gaboury and F.Ghanim, "Coefficient estimates for some general subclass of analytic and bi-univalent functions," Afr. Mat. 28 (2017) pp.693-706.
[13] H.M. Srivastava , A.K.Mishra and P.Gochhayat , "Certain subclasses of analytic and bi- univalent functions," Appl. Math. Lett. 23 (2010) pp.1188-1192.
[14] H.M.Srivastava, S.Gaboury and F.Ghanim , "Initial coefficient estimates for some subclasses of m-fold symmetric biunivalent functions," Acta. Math. Sci. Ser. B Engl. Ed. 36 (2016) pp.863-871.
[15] H.M.Srivastava, S.Sumer Eker and M.Rosihan Ali , " Coefficient bounds for a certain class of analytic and bi-univalent functions," Filomat 29 (2015) pp.1839-1845.
[16] H.M.Srivastava and D.Bansal , "Coefficient estimates for a subclass of analytic and bi-univalent functions," J. Egyptian Math. Soc. 23 (2015) pp.242-246.
[17] Q.H.Xu, Y.C.Gui and H.M. Srivastava, "Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012) pp. 990-994.

