
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1

Analysis of Process Structure in Windows Operating System

Mayuresh Kulkarni1

1Computer Engineering (Pursuing), Department of Computer Engineering, Bharati Vidyapeeth College of
Engineering, Navi Mumbai, Maharashtra, India

---***---

Abstract - Operating Systems have been one of the most
intricate piece of softwares since they came into existence.
Due to recent advancements in technology, the OSes too,
have become extremely powerful. From responding within
few milliseconds to parallelly computing many things in the
background, it becomes difficult to understand how it works
inside. Microsoft Windows handles programs differently
than other operating systems. The reasons for which are
discussed in this text. Analyzing of process structure and its
management inside CPU and Kernel with the help of
Windows, is the core matter. Components, types, process
table, u-area and context are explained in detail.

Key Words: operating system, process, Windows,
analysis, kernel, u-area

1. INTRODUCTION

Operating Systems can be incredibly simple and easy-to-
use at the user level and at the same time be the most
intricate and complex piece of software. Microsoft
Windows, like many other operating systems, is also
divided into 3 sections:

1. User / Application Level

2. Kernel Level

3. Hardware Level

It is similar to the UNIX based systems, but it is crucial to
note that Microsoft Windows is not a UNIX based
operating system. Windows stopped using the 8-bit legacy
code after the release of Windows XP in October 2001, and
also the original CPM programs from the 1990s. Microsoft
Windows now houses Windows NT (also popularly known
as OS/2) in its code. Although previous versions of
Windows were based on MS-DOS, it now is a mixture of
MS-DOS and NT features. This helps to provide a much
better code, which in-tern gives more efficiency and long-
term usability from Microsoft's perspective.

Before diving into process structure and analysing how
Windows handles them, it is essential to understand the
basics of the 3 sections of the Windows Operating System.
This will be immensely helpful to get a deeper
understanding of later sections of this text.

The Operating System is the layer between the computer
hardware and the end-user using the computer. Anything
done on the computer (as simple as just moving the mouse
pointer from one location to another) requires the

'attention' of the operating system. To explain in a better
way, consider this example.

A user is accessing this computer and during the session,
the user clicks/opens some program installed on his
machine. Maybe a browser or something heavy which will
consume little resources to function properly. The
browser before opening is just an application stored in the
computer (may or may not be ready to be opened. This
depends on the machine to machine). When the user
signals to open the application, it becomes a program. It is
important to know the difference between a program and
a process before understanding them at a deeper level of
abstraction, and that too at Kernel level in operating
systems. A program is a static sequence of instructions,
whereas a process is a container for a set of resources
used when executing the instance of the program.

When the operating system is instructed to open the
program, it is converted into a process and the browser is
now pushed into the process/mechanism of CPU
scheduling. According to the definition, CPU scheduling is
a process that allows one process to use the CPU while the
execution of another process is on hold(in 'waiting' state)
due to the unavailability of any resource like I/O, etc,
thereby making full use of CPU. CPU scheduling aims to
make the system efficient, fast, and fair. There are
different CPU scheduling algorithms like FCFS (First Come
First Serve), SJF (Shortest Job First), Round Robin, etc. to
increase the efficiency of the processor.

Now, that the browser program is converted into the
process, it is officially handed over to Kernel by the user
space (or user-level) for further computing and execution.
What the Kernel does is none of the business of user-
space, and it is only concerned with what the Kernel
returns and what the next program is (for adding it to
queue). The Kernel then checks the requirements
demanded by the process and allows them for execution if
they are available. If not, the process goes to the next
task/job programmed if possible, otherwise, it goes into
the 'waiting' state until the resources are available. The
following figure shows the process state life cycle. It
contains the different stages through which a process can
go inside the Kernel.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2

Fig -1: Process State Transition Diagram [1]

On a side note, a visible example of this is high graphics
games played on low specifications computers. Since the
requirements of the game (process) are high, most of the
time they are not available to be allotted. So, they wait for
a few milliseconds, and during this time, if the next frames
are not loaded, the user experiences a delay in displaying
them. This is also called ‘lag’ in layman language.

Once the resources are available, the process resumes
execution until it is completed. This cycle continues
according to the requirements of the user and the
program’s context/intention. The intent is also taken into
consideration because in earlier times, viruses and other
malware producing programs were also treated as other
processes and the verification of authenticity was done
once they entered the CPU [2].

Now that the overall life of a process inside a general
operating system is clear, it will be easier to understand
how the Microsoft Windows operating system handles
this.

2. COMPONENTS OF PROCESS AND THREAD IN
WINDOWS

At the highest level of abstraction, a Windows process
comprises of the following information:

1. Private Virtual Space Address (PSVA): Set of virtual
memory addresses that the process can use.

2. Executable Sub-Process: Defines initial code & data
is mapped to process’s PSVA.

3. List of Open Handles: Used to map various
resources such as semaphores, synchronization
objects, files shared by more than one threads in
the process.

4. Security Context: Access token that defines the user,
security groups, privileges, attributes, claims, User
Account Control (UAC) virtualization state, session,
etc.

5. Process ID (PID): Unique identifier which is
internally a part of client ID.

6. List of Threads of execution: Every process is
divided into sub-processes which are assigned
some task to complete. This sub-process is known
as thread. Every process has at least one thread.

Therefore, it is theoretically not possible to have an
‘empty’ process.

The important thing to note here, is that, all the above-
mentioned information can be tracked by knowing just
one component: the PID. The process id can give access
to the above-mentioned information to authorised
users (users having appropriate rights inside the
system, like administrator or, super user in case of
Linux). There are several ways to get PID of any
process, but Windows provides us with 2 default ways
of getting this PID. One, using Task Manager (Only for
Windows 8 and above). And second is using Command
Prompt (Admin).

1. Task Manager: For this method, it is essential to
have Windows version 8, 8.1 or 10 installed on
your machine. Inside Task Manager, click on ‘More
Details’ and navigate to ‘Details’ tab. Most of the
information which a regular user will need, such as
Name, PID, Status, Access Privilege, CPU (cores),
Memory used (real-time) and a basic description of
what the process does, is given there. From here, it
is possible to get the process id of any application
(as the name of the application is given under
Name tab and not the system process name. To get
the system process name, the 2nd method is more
appropriate as this method is optimal for GUI usage
and the next method is appropriate for Command-
Line Interface usage).

2. Command Prompt: This method is applicable to all
Windows versions above Vista. In the machine,
open Command Prompt (CMD) with Admin
Privileges. If the system is not inside current user’s
folder, then navigate to it. Then type ‘tasklist’
command in the CMD. Depending on system, it may
be quick or take time to gather the information.
Again, here information such as Name (called
Image Name), PID, Session Name (mostly Console
or Services), Session ID (0,1,2,etc depending upon
Session Name) and Memory usage (of the instance
at which the Command Prompt tracked that
particular process) is given.

In the recent versions of Windows 10 (after 2019),
Microsoft has provided an additional option to see
MANY more details of each and every process. In any
Windows 10 version (build 19559 and above), go to
Details tab and right click on any of the columns and
click on ‘Select Columns’ option. There, one can find the
currently selected columns and the other unselected
ones which can be now enabled. Some of the unselected
columns (by default) are: CPU time (time spent in CPU),
Peak Working Set Memory (max memory used during
CPU time), Commit Size (Amount of memory space
reserved by the OS for a process), Paged Memory
(Amount of pageable kernel memory allocated by
kernel or drivers on behalf of the process), Threads
(created and handles by the process), GDI object details,
I/O Read-Writes (just mentions the number, not the
source or the disk/drive it read/written from),

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3

Architecture (x86 or x64; very important for hardware
level Machine Learning Model Preparation), GPU (cores
utilized) and GPU Memory used (real-time).

A thread is entity within a process that Windows
schedules for execution. As mentioned above, a process
cannot run without a thread. Like process, a thread
includes the following components:

1. The contents of a set of CPU registers representing
the state of the processor.

2. Two stacks—one for the thread to use while
executing in kernel mode and one for executing in
user mode.

3. A private storage area called thread-local storage
(TLS) for use by subsystems, run-time libraries, and
DLLs.

4. A unique identifier called a thread ID (part of an
internal structure called a client ID; process IDs and
thread IDs are generated out of the same
namespace, so they never overlap).

Threads sometimes have their own security context, or
token, which is often used by multithreaded server
applications that impersonate the security context of
the clients that they serve.

3. TYPES OF PROCESSES IN WINDOWS
OPERATING SYSTEM

 There are 4 basic types of user mode processes in
Windows 10:

1. User Processes: 32-bit & 64-bit processes that are
generated when launching an application (either
by user or by another application) are included in
User Processes category.

2. Service Processes: These are processes that host
Windows services, such as the Task Scheduler and
Print Spooler services. Services generally have the
requirement that they run independently of user
logons. Many Windows server applications, such
as Microsoft SQL Server and Microsoft Exchange
Server, also include components that run as
services.

3. System Processes: These are fixed, or hardwired,
processes, such as the logon process and the
Session Manager, that are not Windows services.
E.g. processes generated by Intel Networking
module that communicates directly with the
router (consider dealing with Wi-Fi here), then
this process will come under System Process.

4. Environment subsystem server processes: These
implement part of the support for the OS
environment, or personality, presented to the
user and programmer.

These processes are identified by the operating system at
user level. At Kernel level, these processes are treated
according to their context. Before understanding about the
context of process and its usage in optimization, it is
essential to understand about u-area. U-area is the next
section of this text.

4. FIELDS IN PROCESS TABLE AND U-AREA

U-area is a section of process information which contains
the execution time environment details about that
particular process. This is valid if the process starts and
completes its execution in the same environment.
Otherwise, in most cases, there are different u-areas
according to different threads as per the requirement of
the program/process. It is essential to note that in
majority of situations, more than one u-areas of process
are there. And each u-area specifies the executing
environment details. So, the operating system has to allot
the requested resources and generate the environment
necessary to complete execution of the process.

Every process that comes to CPU for execution is first
registered in a ‘process table’ which is maintained by the
Kernel of the operating system. This is true for each and
every operating system and is not limited to Windows
only. So, this process table contains different types of
information about the process. The fields in the process
table are [4]:

1. The state field identifies the process state. The
states are according to Fig-1 given above.

2. The process table entry has fields that allow to
locate the process and its u area in main memory
(or in secondary storage). The kernel uses this
information to do context switch to the process
when the process moves from ‘preempted’ state
to ‘user running’ state. Kernel also uses this info
when swapping (or paging) process to and from
main memory.

3. The process table has a field which gives process
size, for the kernel to know exactly how much
space it will take.

4. User IDs (or UIDs) determine various process
privileges.

5. PIDs specify relationship of the process. ID fields
are setup when the process enters the ‘created’
state in the fork system call. While the fork call is
used by all operating systems, for external usage
it is limited to Linux only.

6. Scheduling parameters allow the kernel to
determine the order in which processes move
from ‘kernel running’ and ‘user running’ states.

7. Various timers give process execution time and
kernel resource utilisation, used for process
accounting and for calculation of the process
scheduling priority.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4

The urea contains the following fields that further
characterise the process states:

1. A pointer to the process table identifies the entry
that corresponds to the u area.

2. The real and effective user IDs determine various
privileges allowed to process, such as file access
rights.

3. Timer fields record the time the process spent
executing in user mode & in kernel mode.

4. An array indicates how the process wishes to
react to the signals.

5. The control terminal field identifies the “login
terminal” associated with the process if one exists.

6. An ‘error field’ records errors encountered during
system call (failure to allocate disk space, failure
to communicate with external hardware like
scanner, printer, etc).

7. A return value field contains the result of the
system call.

8. I/O parameters Describe the amount of data to
transfer, the address of source data array in user
space file offsets for I/O, etc.

9. The current directory and current route describe
the file system environment of the process.

10. User file descriptor table records the files the
process has open.

11. Limit field restrict the size of a process and the
size of a file it can write.

12. A permission modes field masks mode settings on
files the process creates.

Fig -2: Virtual to Physical Address Mapping Diagram

The System-V kernel divides the virtual address space into
logical regions (a contagious area of the virtual address
space of a process that can be treated as a distinct object
to be shared or protected). The kernel contains a region
table and allocates an entry from the table for each active
region in the system. The region table contains the
information to determine where its contents are located in
the physical memory. Every process contains a private per
process region table, called pregion, which may exist in
process table, u-area or maybe in some discrete location
with a shared virtual address. Every pregion entry points
to a region table entry & contains the starting virtual
address of the process.

The above image shows 2 processes A & B, their regions, j
and virtual addresses where the regions are connected.
The processes share text region ‘a’ at virtual addresses 8K
and 4K, respectively. If process A reads memory location
8K and process B reads memory location 4K then they
actually read the memory location in region ‘a’. The data
regions & stack regions of the two processes are private.

A process can access its u-area only if it is in kernel mode.
It cannot access u-area from user mode. This is because
the u-area partially defines the context of the process and
also because the kernel can access only 1 u-area at a time.
When the kernel schedules the process for execution (in
kernel mode), it also finds the corresponding u-area in the
physical memory and makes it accessible to the process by
mapping it to a virtual address and providing the virtual
address to the process.

This is all about the u-area of processes in Windows. The
next part of process analysis is understanding the Context
of a process.

4. CONTEXT OF A PROCESS

The context of a process comprises of its User-Address
Space, Content of Hardware Registers & Content of Kernel
Data Structures. The context is actually the union of 3 sub-
contexts:

1. User-Level Context
2. Register Context
3. System-Level Context

A table which gives contents of these 3 sub-contexts is
given below:

User–Level
Context

Register Context System–Level
Context

Process text,
data, user
stack, shared
memory
(virtual
address
details).

1. Program Counter –
Virtual Address of the
next instruction
which will be
executed by the CPU.

2. Process Status
Register (PS) –
Specifies the
hardware status of
the machine.

3. Stack Pointer –
Follows PS. Contains
current address of
the next process in
queue.

4. General Purpose
Registers – Stores
data generated by the

1]. Static Part:

A. Process State
B. Process
Control
Information
C. Pregion
Entries

2]. Dynamic Part:

A. Stack frames
of Kernel
Procedures
(which are
required by the
process)
B. Stack of other
system level
contexts

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5

process during
execution/during its
lifetime.

The system level context of a process has 2 parts [4], static
and dynamic as shown above. It is interesting to note that
every process has only 1 static part, which can be
referenced by Kernel for high level use (for example, in a
navigation application, a process which returns the
current location of the device will be obviously using a
system context and the process will be running all the
times during the application’s runtime. Therefore adding
this data to static part of the process will not only be
beneficial for application, but also for the kernel for
repeated reference to same data and now at the same
place, so the effective searching time is reduced giving a
faster response to the application), but can have multiple
dynamic parts for a single process (for example, consider
the same navigation but this time the user is repeatedly
changing the settings of, let’s say, location accuracy. In this
case, the location accuracy of the device is dependent on
not only the satellites connected but also other
technologies such as Bluetooth, internet connection type,
whether the device is connected to Wi-Fi or is using
mobile data from nearest coverage tower and so on. Due
to continuous change in accuracy settings, the application
has to change the requested resources again and again and
eventually, the dynamic part of the system level context is
also changing).

5. CONCLUSION

Computers earlier used to take minutes to do simple
arithmetic, but the recent advancements in technology and
the computer world has given so much power to these
electronic devices that they can control some complicated
machinery situated thousands of miles away by sitting at a
coffee shop or while waiting in bus line. Parallelly, this is
possible only because the operating systems are evolving
at the same, or higher rate. In this text, an in-depth study
of how Microsoft Windows operating system analyzes and
handles processes is done. It is really astonishing to see
something which seems to transparent, simple and elegant
and be so complicated yet perfectly planned at the same
time.

6. FUTURE SCOPE OF RESEARCH

The next stage of research is to study how Microsoft
Windows operating system will execute the processes to
reduce the time required to compute instructions and how
the operating system dynamically does parallel processing
while keeping the kernel load-free at all times.

Further, after execution, the study of how Windows
manages to change contexts of processes without letting
the system to bottleneck will also be interesting.

REFERENCES

[1] Neetu Goel, Dr. R. B. Garg, “A Comparative Study of

CPU Scheduling Algorithms”, International Journal of
Graphics and Image Processing, Vol. 2, Issue – 4,
November 2012

[2] Sukanya Suranauwarat, “A CPU Scheduling Algorithm
Simulator”, 37th ASEE/IEEE Frontiers in Education
Conference, October 10 – 13, 2007, Milwaukee, WI

[3] Mayuresh Kulkarni, Torana Kamble, "INTEGRATION
OF MACHINE LEARNING INTO OPERATING SYSTEMS:
A SURVEY", International Journal of Creative Research
Thoughts (IJCRT), ISSN:2320-2882, Volume.8, Issue 4,
pp.1270-1273, April 2020

[4] Maurice Bach, “THE DESIGN OF THE UNIX
OPERATING SYSTEM”, ISBN: 81-203-0516-7

