
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7019

Study of WebSocket Protocol for Real-Time Data Transfer

Mr. Aniket Avinash Naik1, Mrs. Meghana R Khare2

1PG Student, Dept. of Electronics, Walchand College of Engineering, Sangli, Maharashtra, India
2Assistant Professor, Dept. of Electronics, Walchand College of Engineering, Sangli, Maharashtra, India

---***---

Abstract - Today, with rapid growth in number of
internet users, there is increasing demand for real-time data
update. There are lots of business entities who want their
customers to get instant product specific information
updates on their web portals. HTML5 gives easy ways of
implementing client side for real-time, full duplex client-
server communication over WebSocket protocol. This paper
presents the necessity of real-time data exchange for web
applications, comparison of WebSocket with various
application layer communication techniques like HTTP
polling, Long polling, Server Sent Events (SSE) etc., analysis
of WebSocket handshake and data flow. This paper also
presents some of WebSocket implementation techniques at
server and client side.

Key Words: WebSocket, Full duplex, Persistent, Real-

time communication, HTTP, HTML5

1. INTRODUCTION

It's been more than 20 years since large amount of

information is available on internet in the form of web

pages. For a long time, web pages were static and needs to

be updated manually when information gets outdated. The

changes in information were not getting reflected to the

web page, until that page was not reloaded. Previously

there was not that much need for frequent information

update on web page. But in this web 4.0 era, trend for real-

time web page information update is becoming necessary.

There are certain areas like share markets, stock price,

foreign exchange, browser-based multi-player online

gaming etc. where real-time communication is important

[1].

For any type of web applications, HTTP protocol is a

way of achieving communication between client and

server. Client first opens a port and makes a request to

server for the required data. Server then responds to that

request by sending the requested data to the client on that

port. HTTP request headers have some client specific

information with the help of which, server can respond to

the appropriate client. During this process server doesn’t

store any state related information about client and hence

HTTP is a stateless application layer protocol.

2. NEED OF REAL-TIME COMMUNICATION

Now days, REST APIs (Representational State Transfer

– Application Programming Interface) plays a role of

middleware for the data exchange between client and

server. Client requests to the server for data resource

using unique identifier called URI (Uniform Resource

Identifier). The request action is identified using normal

HTTP methods viz. GET, PUT, POST and DELETE. The

request – response cycle gets completed when server

responds to the client for any of the above action.

Now suppose resources present on server are

updating frequently or based on some internal server

event, then this becomes an asynchronous task. And clients

can get these resource updates only when they put a fresh

request to the server for those resources. For that purpose,

client needs to constantly poll the server to get the

periodic resource updates. But with this way, lot of

unnecessary bandwidth/data gets consumed and client

will get same response until there is any update at server

resources. This also affects performance of the server.

Remedy for this problem is what if server can push

resource data to the registered/connected clients,

whenever the resources get updated? This also helps to

those web applications that are responsible to display real-

time information on web pages in the form of dashboards.

3. WAYS TO ACHIEVE REAL-TIME DATA TRANSFER

HTTP Polling: This is the simplest technique of achieving

real-time communication. In this technique, client

periodically makes XHR/AJAX requests to the server and

server sends a response data for each request. The

drawback of this technique is server needs to process large

number of requests hence load on server is high. Also, until

there are no any changes in resources, client will receive

same response again and again.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7020

Long Polling: Unlike HTTP polling, in this technique,

server holds the client connection open until new data is

available, or threshold timeout occurs for that client. At

client side, once the response is received, client needs to

initiate a new request to the server to repeat this process.

With this technique data loss may be possible if client was

not able to receive the response from server. Also, one may

need to consider performance, scaling, device support and

fallbacks before using it [2].

Server Sent Events: Also abbreviated as SSE is one-way

communication mechanism where data flows from server

to client only. In this technique, server keeps the client

connection open and sends the data in the form of streams.

Though this technique is based on HTTP, not all browsers

supports server sent events. Also, its implementation at

server and client side is quite complex [3].

WebSocket: It is an application layer protocol which

provides a full duplex and persistent way of

communication between client and server over a single

underlying TCP connection. It’s an upgrade over HTTP

protocol. WebSocket keeps the connection open and allows

the data/messages to be passed back and forth between

client and server. This helps achieving a real-time data

transfer to and from the server.

4. WEBSOCKET

 WebSocket acts as an upgrade over HTTP protocol

which means, it uses same underlying TCP connection and

creates channel between client and server for achieving

full duplex, persistent way of communication. Like HTTP,

web sockets also have their own set of protocols. It uses

ws:// (WebSocket) and wss:// (WebSocket Secure), URI

schemes to identify WebSocket connection, the rest of URI

components are same as of generic syntax.

4.1 WebSocket Opening Handshake

 Client can establish WebSocket connection with server

through a process known as the WebSocket handshake. Fig

(1) shows the initial handshake for establishment of

WebSocket channel between client and server.

Fig – 1: WebSocket Connection Establishment

Step 1: Client sends HTTP request to the server which

includes connection upgrade header.

Step 2: If server supports WebSocket protocol, it responds

back to client with connection upgrade response header.

Step 3: Initial HTTP connection gets replaced by

WebSocket connection that uses the same underlying

TCP/IP connection.

Step 4: Two-way data transfer takes place over newly

established WebSocket channel.

 After successful establishment of WebSocket channel

between server and client, server responds with 101 -

HTTP response code. It stands for protocol switching i.e.

initial HTTP connection gets upgraded to WebSocket

connection. Fig (2) and (3) shows the details of request

and response headers captured during WebSocket

network analysis.

Fig – 2: WebSocket Request Headers

Fig – 3: WebSocket Response Headers

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7021

Following are some important parameters included in the

headers;

Connection: Upgrade - Generally HTTP request use

connection as ‘keep-alive’. But for establishing WebSocket

connection, ‘Upgrade’ parameter must be included.

Upgrade: websocket - This parameter is used to ask the

server, to switch the protocol to one of the listed protocols

which include WebSocket.

Sec-WebSocket-Key – It is 16-byte random value

generated by client with base64 encoding.

Sec-WebSocket-Version: 13 – This is the only accepted

version of WebSocket protocol i.e. 13. Parameters with

different value will result in invalid header.

4.2 WebSocket Data-flow

 WebSocket is a framed protocol. The set of data sent

over WebSocket called message is encoded in a frame. This

frame includes various parameters like frame type,

payload length, payload, masking key etc. These frames

can be classified into 2 types viz. data frame and control

frame [4]. Data frame includes actual data to be sent

between client and server. Control frame contains the

control messages like ping/pong, which are required to

maintain the connection between client and server.

Normally server takes care of these control messages and

transfers them periodically after certain interval. Fig (4)

shows the data exchange between client and server,

captured during WebSocket network analysis.

Fig – 4: WebSocket Data-Flow

WebSocket is standardized by IETF as RFC6455, and its

official documentation provides more details about the

WebSocket frame [5].

4.3 WebSocket Closing Handshake

 Both server and client can close the WebSocket

connection by sending a closing frame. Receiving party

must also send the close frame in response and no more

data should be exchanged after that on the channel. This

frame body may contain closing opcode and reason for

closing. Once closing frame is received by both the parties,

underlying TCP connection gets turn off [5].

5. IMPLEMENTATION TECHNIQUES

 There are many ways to implement WebSocket protocol

at server and client side. Depending on requirement and

some other development factors, one can chose right

technique. Some of the techniques are as described below;

 For server-side implementation of WebSocket, Python3

provides a generic WebSocket module. This module is

based on AsyncIO programming which is officially

supported by Python3.5+. Socket.IO, Tornado are some

other frameworks based on python for implementing

server side. Apart from that NodeJS, CPP - BOOST also

gives some useful ways to implement WebSocket at server

side.

 Now days, WebSocket technology is supported by all

modern browsers. But one cannot directly check the

information on browser by simply putting the WebSocket

URL. For that purpose, WebSocket compatible client is

required. HTML5, JavaScript, Python gives a way to create

WebSocket object which will automatically open the

connection toWebSocket server.

Ex:

var ws = new websocket (url, protocol);

In this example, ws is the JavaScript WebSocket object. It

takes WebSocket URL as a mandatory parameter. It then

provides some methods like on_open(), on_close(),

on_error(), on_message() etc. to capture WebSocket

specific events. And one can implement business logic

using these methods.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7022

6. RESULTS & ANALYSIS

 Based on the implementation of WebSocket server on a

system with dual-core processor and 6GB of physical

memory, it is seen that server is able to sustain more than

1500 clients with one way data flow from server to client.

Data size in this case is limited in a range of few KBs in the

form of JSON format. Server side development part is

based on python - AsyncIO [6]. For scalability and

performance analysis, Chart (1) & (2) shows CPU &

physical memory usage with respect to increasing number

of active clients within fixed interval. This analysis is

carried out using ‘Artillery’ – an open source load testing

tool supported on Node.js 10.16.3 or later.

Chart – 1: Active Clients vs. CPU Usage

Chart – 2: Active Clients vs. Memory Usage

7. CONCLUSIONS

 This paper presents the study of WebSocket protocol for

real-time data exchange, its comparison with other

technologies, implementation techniques etc. WebSocket

cannot replace existing HTTP polling but can be

considered as an upgrade for that. This technology can be

used in practice, where there is necessity of real-time data

update over the web. WebSocket technology also helps in

reducing the network traffic and load on server as

compared to other techniques.

REFERENCES

[1] V. Pimentel and B. G. Nickerson, "Communicating

and Displaying Real-Time Data with WebSocket,"

in IEEE Internet Computing, vol. 16, no. 4, pp. 45-

53, July-Aug. 2012, doi: 10.1109/MIC.2012.64.

[2] Shruti M. Rakhunde, “Real Time Data

Communication over Full Duplex Network Using

Websocket”, IOSR Journal of Computer Science

(IOSR-JCE), PP 15-19.

[3] Server-sent events.

https://en.wikipedia.org/wiki/Server-sent_events

[4] D. Skvorc, M. Horvat, and S. Srbljic,“Performance

Evaluation of Websocket Protocol for

Implementation of Full-Duplex Web Streams”,

MIPRO 2014, 26-30 May 2014.

[5] https://tools.ietf.org/html/rfc6455

[6] Python websockets documentation.

https://websockets.readthedocs.io/en/stable/

[7] WebSocket in HTML5.

http://en.wikipedia.org/wiki/WebSocket.

https://en.wikipedia.org/wiki/Server-sent_events
https://tools.ietf.org/html/rfc6455
http://en.wikipedia.org/wiki/WebSocket

