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Abstract -Massive data collected by automated fare collection (AFC) systems provide opportunities for studying both 
personal traveling behaviors and collective mobility patterns in urban areas. Existing studies on AFC data have 
primarily focused on identifying passengers’ movement patterns. However, we creatively leveraged such data for 
identifying pickpocket suspects. Stopping pickpockets in the public transit system has been crucial for improving 
passenger satisfaction and public safety. Nonetheless, in practice, it is challenging to discern thieves from regular 
passengers. In this paper, we developed a suspect detection and surveillance system, which can identify pickpocket 
suspects based on their daily transit records. Specifically, we first extracted a number of useful features from each 
passenger’s daily activities in the transit system. Then, we took a two-step approach that exploits the strengths of 
unsupervised outlier detection and supervised classification models to identify thieves, who typically exhibit abnormal 
traveling behaviors. Experimental results demonstrated the effectiveness of our method. We also developed a prototype 
system for potential uses by security personnel. 
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1. INTRODUCTION  
 
Public transit passengers can easily become distracted in crowded environments, where they are often rushing 
from one location to another. Having their focus drift from their belongings, they often become common targets of 
pickpockets [1, 2]. During the first 9 months of 2014, it was reported that 350 pickpockets were apprehended in the 
subway system and 490 on buses in Beijing.1 Many other big cities around the world, such as Barcelona, Rome, and 
Paris, also suffer from pickpocket problems.2 Indeed, it is challenging to detect theft activities committed by 
cunning thieves who know how to escape without being discovered. It is critical to provide a smart surveillance and 
tracking tool for transit system security personnel. With rapid advances in information technology and 
infrastructure, transactional records collected by automated fare collection (AFC) systems are now available for 
understanding passengers’ mobility patterns and urban dynamics [3, 4, 5, 6, 7]. Most existing studies focus on 
identifying regular, collective mobility patterns, such as commute flows and transit networks. Our study is the first 
to focus on identifying thieves based on AFC data. It is possible to detect thieves using AFC records because 
behavioral differences logged in the mobility footprints may be used to separate suspects from regular passengers. 
Examples of such behaviors include traveling for an extended length of time, making unnecessary transfers, and 
taking regular routes with random stops. Designing an intelligent system that automatically extracts specific, 
identified behavioral features, and dynamically detects and tracks pickpocket suspects has become a possibility. 
Detecting thieves based on AFC records is not a simple outlier detection problem. Fig. 1 shows the difference 
between a known thief and an outlier. We can see a number of trajectories between hot regions A and B. By careful 
examination, we see that most passengers move from one region to another using a near-optimal configuration 
(e.g., shortest time/distance, or a minimal number of transfers). However, a passenger (a known suspect) who took 
the path A → C → D → B looks suspicious because there is no need to make transfers at C and D in order to reach B. 
Based on the above observation, passengers who exhibit such abnormal behaviors will be selected for further 
examination. In contrast, another passenger who travels from E to B is an outlier, since few passengers take the 
same path. However, this passenger is likely just a regular passenger who originates from a less crowded area. 
Detecting thieves is challenging also because not every trip made by a regular passenger looks normal. Regular 
commuters may occasionally make trips to visit friends or places of interest, and such trips may look suspicious by 
how much they deviate from regular passenger behaviors. Adding to this complex landscape, a large number of AFC 
records are being collected from millions of passengers, when only a tiny fraction of passengers are actual 
pickpockets. Pinpointing such a small group of people within such a large-scale dataset is analogous to searching for 
a needle in the haystack. Meanwhile, we need to effectively transform our knowledge based on model development 
into a decision support system. Such a system needs to provide real-time decision recommendations to guide 
security personnel to perform their work more efficiently. In this paper, we adopted a comprehensive approach to 
the pickpocket detection problem. The overall framework of our solution is illustrated in Fig. 2. We first partitioned 
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the city area into regions with functional categories. Then, the mobility characteristics of passengers were extracted 
from transit records dynamically over time. A core component of the system was a two-step passenger classification 
process, the first step being regular passenger filtering, and the second step being suspect detection. Finally, system 
user feedback information, such as newly confirmed thieves, was entered as ground truth for future model training. 
The two-step pickpocket detection framework was proposed to combat the problem of extreme imbalance between 
positive and negative samples. In our preliminary work [8], we assessed the feasibility of this two-step framework 
with promising results. A major difference in this current study from our preliminary work is that instead of using 
offline data, we designed a real-time system with a dynamic update mechanism. Specifically, an ensemble of many 
base models was employed in the regular passenger filtering step, which helped with balancing training samples for 
an improved degree of generality and better suspect detection performances. The base models in this ensemble 
system were managed with a dynamic updating mechanism, which was provided based on a utility function that 
strikes a tradeoff between effectiveness (i.e., performance) and relevance (i.e., recency). A more detailed description 
of this system may be found in Section 5.2. The contribution of our study can be summarized as follows. Firstly, we 
identified a number of features that may be extracted from AFC records and are potentially useful for distinguishing 
thieves from regular passengers. Secondly, a two-step approach was proposed to make the suspect detection 
problem practical in a large-scale data environment where the positive and negative samples are extremely 
imbalanced. Thirdly, our dynamic filtering enhancement significantly reduced the everyday computation costs and 
maintained superior accuracy. Most importantly, a real system for the end user was designed and tested using real-
world, large-scale data. As an applied data science study, our solution is the first to address an important social 
issue—identifying pickpockets—by using big data. The significance of this work has been recognized by a featured 
article in The Economist. 3 The remainder of this paper is organized as follows. First, we will summarize related 
work in Section 2. Then, we provide an overview of the real-world datasets in Section 3. A detailed description of 
features that we extracted to characterize mobility profiles of passengers is presented in Section 4. A two-step 
framework of the suspect identification system is proposed in Section 5. Details of the real-time system design are 
presented in Section 6. , we also provide an overview of the deployed system in Section 7. After presenting and 
discussing experimental results in Section 8, Finally, we draw conclusions in Section 9. 
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2. RELATED WORK 
 

As urban sensing data, such as GPS traces, call detail records, and smart card logs, grow ubiquitous, research 
efforts devoted to analyzing such data have resulted in a number of works in recent years. In the context of mining 
public transportation data, in this section, we provide a brief review of the related work. 
 
2.1 Passengers Activity 
 

Patterns the first group of existing literature focuses on finding patterns in passenger activity records. Such 
knowledge can be useful in a variety of applications, and plays a vital role in effectively finding and satisfying 
passenger needs. Examples include assessing the performance of the transit network, identifying and optimizing 
problematic or flawed bus routes, improving the accuracy of passenger flow forecasted between two regions, and 
making service adjustments that accommodate variations in ridership on different days. In particular, [4] estimated 
the crowdedness of various stations in the transportation network using AFC data. [9] measured the variability of 
transit behaviors on different days of the week. In addition, different studies have investigated unique 
characteristics of traveling patterns of the elderly [10], students, and adults [9], which provided interesting insights 
for understanding behavioral differences of sub-populations. It has been suggested that human mobility patterns 
follow a high degree of spatial and temporal regularity, and are thus highly predictable [11, 12]. By identifying trip 
patterns, these studies typically aimed to discovering movement patterns by finding frequently visited places of 
regular passengers, who traveled the same sequence of places at a similar time of day. For example, [13] identified 
spatiotemporal patterns from GPS traces of taxis for night bus route planning. [14] tried to predict the most 
common routing preference of past passengers by identifying the most frequented travel paths during a certain 
time period. [3] analyzed sets of moving objects, like traffic patterns, bird migration, and infectious disease 
transmission, to discover and explain movement patterns. 

 
2.2 Abnormal Traveling Behavior Detection 
 

 Existing studies that detect anomalies in urban sensing data can be divided into two categories: those based 
on locations, and those on trajectories. Along the line of location-based anomaly detection, [15] presented a 
framework that learned the context of different functional regions in a city, which provided the basis of our feature 
extraction approach (see Section 3.2). In addition, [16] attempted to discover casual relationships among 
spatiotemporal outliers. [17] mined representative terms from social media posts when location-relevant events 
happened in the city, such as accidents or protests. [18] discovered black-hole or volcano patterns in human 
mobility data in a city, which could quickly identify gathering events, such as football matches or concerts. Detection 
of such anomalies can help send alerts, and provide input for intelligent decision support, such as smoothing the 
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traffic flow [18]. The main goal of trajectory based anomaly detection is to discover a small percentage of 
individuals, whose movement traces are uniquely different from the general population. One example is to identify 
fraudulent taxi driving behaviors. A large number of studies have investigated trajectory based anomaly detection 
using data mining techniques, such as graph based [3], clustering based [4, 5, 19], local/context-aware based [20, 
21], dimension reduction based [22], and evidence based (e.g., using Dempster-Shafer theory [23]). While the 
trajectory of pickpockets containing features that are implicit, previously unknown, and potentially useful from 
large datasets, pickpocket suspect detection based on AFC records is a novel problem that has not been considered 
in the literature, and proves to be a challenging research endeavor. 

  
3. DATA DESCRIPTION  
 

The data for our study were collected from multiple sources. These include transit records, geographical 
information, and theft incident reports. In this section, we provide an overview of the data. 

  
3.1 Transit Records  

Our study is based on a large-scale transit records dataset collected from a public transit system that  
includes buses and subways. Passengers utilizing the transit service are charged by the distance they travel. A 
rechargeable smart card is issued to each passenger, who swipes the card when they boarding or exiting a vehicle. 
The AFC system then calculates the fare according to the stations of boarding and exiting. As a result, each raw AFC 
record consists of the smart card ID, the route number, the event (i.e., boarding or exiting), the station, and the time 
stamp. We transformed the data so that each transit record consists of one boarding and one exiting event of the 
same ID. In order to describe the data and subsequent feature extraction process clearly, we first clarify two 
concepts, transit records and trips, by providing a concrete example. Fig. 3 illustrates an example passenger’s 
activities in a typical day. Part (a) is the actual trajectory on the city’s map; Part (b) splits the trajectory into three 
separate trips; and Part (c) demonstrates the corresponding transit records in our data. Specifically, Passenger 
4322 left home via Route 52 at Station a at 7:15 a.m. At 7:40 a.m., he transferred by exiting Route 52 at Station b and 
walking across the street to take Route 26 at Station c (7:46 a.m.). Then he exited at Station d, next to his workplace, 
at 8:23 a.m. We determined that he completed Trip 1 because the next time he entered the transit system was more 
than 30 minutes later (i.e., our empirical cutoff). Therefore, the afternoon transit from d to e was considered Trip 2; 
and the transit from e back home to a, with a transfer at f, was considered Trip 3. As a result, we collected five 
transit records for Passenger 4322 that describe three trips. 
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Intuitively, a transit record corresponds to one segment of a passenger’s transit between a pair of consecutive 
boarding and exiting events. Even though this segment of transit may pass a number of stations, the passenger does 
not exit the vehicle during this time. In contrast, a trip consists of one or more such segments, which connect places 
of interest (i.e., where the passenger stays for extended periods of time) on the two ends. A trip may include 
connections or transfers, as long as those breaks are relatively short (e.g., 30 minutes or less) in time. Formally, we 
provide the following definitions for concepts that are important for this study. Definition 1 (Transit record). A 
transit record tr contains the following information: • trroute: the bus/subway route number; • trsboard, trtboard: 
the boarding station and time; and • trsexit, trtexit: the exiting station and time. As a result, for each transit record, 
we were able to compute the travel distance trdist, travel time trtime, and number of stops trstops during the 
transit. Definition 2 (Trip). A trip T r is a sequence of transit records T r = (tr1 , tr2 , . . . , trn), where the passenger’s 
origin location is T rorigin = tr1 vboard and the destination is T rdest = trn sexit. In practice, we construct one trip 
record if and only if the time gap between two consecutive transit records is 30 minutes or less. The trip’s time 
duration is calculated as  “T rtime = trn texit − tr1 tboard”. 
 
The public transit network dataset provides the geocoordinates of the various bus and subway stations on the road 
networks. As shown in Fig. 5(a), in total, we have 44,524 bus stations (points in gray) covered by 896 bus routes, 
and 320 subway stations (points in blue) covered by 18 subway routes. To remove the redundancy and better 
model the mobility patterns, we merged stations located at the same road intersection, as demonstrated in Fig. 5(b). 
 

 
3.2 Geographical Information 

To project the transit records to the city map, we made use of external datasets of important geographical 

information, namely, the road network data, the points of interests (POI) data, and the public transit stations. The 

POI data consist of the geo-coordinates of businesses and landmarks with their categories. We consider ten broad 

categories of POI, as summarized in Table 1. 
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      As a preprocessing step, we first followed Yuan’s work [15] to segment the urban area into small regions by 

major road networks, as shown in Fig. 4(a). Then, using the POI data, we categorized each region into one of the ten 

functional zones we identified in Table 1. These regions are then color coded visualized in Fig. 4(b) 

 

 

 

   

 

 

   

 

3.3 Incident Reports  

Confirmed pickpocket incidents are publicly announced via Sina Weibo, the primary social network service 

in China. It is considered public data since all posts are visible to everyone, just like Twitter in the United States. By 

searching a number of keywords (e.g., Beijing, public transportation, and thief), we initially identified 10,529 

records of Weibo posts during our study period. We included two types of pickpocket reports: official 

announcements posted by the police4 , and personal complaints posted by the victims. Fig. 6 provides an example of 

each type of report. The date, time, and location of the theft events are normally identified in the posts, which 

enabled our ability to link such events to other sources of data. 
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Among the Weibo posts found, we were able to identify 873 theft events according to route or station 

information with matching date and time stamp. For police reported events, thieves were caught and remove from 

the vehicle. We were able to uniquely determine their card ID since their entry to the transit system was 

documented but their exit was not. Oftentimes these same smart cards were no longer active for the next 48 hours. 

We flagged them as actual thieves. Since thieves involved in victim reported events were not caught, we could not 

identify them according to the no-checkout rule. Instead, we manually labelled thieves according to their travel 

behaviors. Specifically, we first identified all passengers on the vehicle during the same period of time, and then 

visualized their trajectories to ascertain whether their travel patterns were typical. This was a manual process 

performed by a public transportation expert who was familiar with the city. Some events might be associated with 

more than one thief. For example, the police may report catching several thieves who commit crimes as a group. 

Therefore, from these 873 police and victim reported events, we distilled 936 card IDs and flagged them as as true 

suspects. 

4. MOBILITY CHARACTERISTICS 

 To distinguish pickpocket suspects from regular passengers, we extracted a number of features from 

passengers’ AFC records. In this section, we describe these features and discuss their potential use for 

characterizing travel patterns in the public transit system. 4.1 Travel Time and Frequency The daily travel time is 

defined as the total duration spent by each passenger in the public transit system. The daily riding frequency is 

defined as the number of transit records traveled by each passenger per day. Indeed, pickpocketing is hard work: a 

thief has to spend a long time in crowded buses, subways, or stations to identify easy targets. To find more theft 

opportunities, a pickpocket tends to stay in the public transit system for a long time and makes random, frequent 

transfers. 
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Fig. 7 plots the distribution of daily travel time and riding frequency, respectively. We can see that more 

than 80% of passengers finish their travels within 2 hours and within 2 transit records per day. In comparison, the 

identified thieves often spend more than 3 hours traveling daily, with a higher daily riding frequency. 

4.2 Short-Distance Rides  

A short-distance ride is considered a transit segment that passes less than three station stops. Due to the 

density of stations in Beijing, normal passengers usually take rides that pass a larger number of stations. In contrast, 

pickpockets often switch routes within a few station stops to avoid attracting fellow passengers’ attention and being 

recognized. 

 

Fig. 8 shows the distribution of passengers taking various numbers of short-distance rides, for those with 7 

and 19 transit segments, respectively. In both plots, the x-axis is the number of short-distance rides and the y-axis is 

the percentage of passengers. For passengers with 7 transit segments, as shown in Fig. 8(a), the distribution is 

approximately Gaussian with mean 3. For those with 19 transit segments, as shown in Fig. 8(b), the peak of the 

distribution is shifted to the right, showing that the relative frequency of short distance rides increases. 

4.3 Transitions among Functional Zones  

A high-level view of human mobility patterns can be summarized as transitions among regions, where each 

region may cover multiple stations. For example, the morning commuting trips can be abstracted as “departing 

from residence region, then transferring at a transit hub, and finally arriving at a business region.” Such sequential 

information proves useful for understanding mobility patterns and predicting traffic flows [24, 25, 26]. Comparing 

regular passengers and pickpockets, we observed that regular passengers often presented typical sequential 
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patterns, whereas pickpockets were more likely to wander randomly among the city’s functional regions. Features 

to represent transitions among functional zones were extracted as follows. First, we preprocessed the geographical 

information, as described in Section 3.2. Then, each station s ∈ S were labeled by the region r containing the station, 

denoted by s ∈ r. For each transit record tr, we also denoted tr ∩ r 6= ∅ if trsboard ∈ r or trsexit ∈ r. As a result, we 

were able to define features such as number of boarding stations and number of boarding regions. Next, we counted 

the transition frequency between any pair of function categories for each passenger’s daily trips. For M functional 

categories, the functional transition features would be represented as a matrix F T ∈ RM×M. Fig. 9 shows an 

example of a passenger trip, the corresponding transition matrix, and the vector of transition features, where R, T, 

SC, and S represent residence, transportation, scenic spot, and shopping, respectively. In this example, only these 

four functional categories are considered. Specifically, the passenger in Fig. 9(a) left one residence location, and 

after lingering around three other locations with the same function, took a round trip passing one transportation 

location, one scenic spot location, and one shopping location before returning to the initial residence location. The 

corresponding transition matrix of the trip is shown in Fig. 9(b). After vectoring this frequency matrix, we can 

represent this trip’s functional transition features as shown in Fig. 9(c). 

 

4.4 Frequently Visited Regions  

Most people visit a small number of familiar locations. Likewise, pickpockets often spend a large portion of 

time within a few routes or regions. For example, some thieves prefer to scout targets in busy transit hub stations, 

and follow them onto buses or trains. Once the crime has been committed or the target lost, the thief would likely 

continue to look for the next victim. Thieves are intimately familiar with these areas and wander around them. We 

can measure their wandering behaviors to identify suspects with simple variables like the maximum number of 

times a route was taken or the maximum number of visits made to a region. These wandering behaviors cluster 

around passengers’ boarding or exiting locations. 
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A density-based algorithm like DBSCAN [27] could be executed to find these location clusters. The DBSCAN 

results for the example passenger (an actual pickpocket) shown in Fig. 10, where each square represents a boarding 

or exiting event, the thief visited 38 boarding and exiting locations, and 11 clusters were formed. We could then use 

the number of clusters located as a feature to measure the extent of wandering concentration. 

4.5 Deviation from the Social Norm  

A group of features were considered to represent deviations from normal behaviors of most passengers. 

These are labelled as social features and help determine deviations from the social norm. Two very informative 

social features are the time gap of trips and the time gap of region transitions. Given the same origin and 

destination, the trip variation of the majority of the population (i.e., regular passengers) is low. For example, most of 

the trips will be finished within a specific amount of time given the trip origin and destination, while pickpocket 

suspects may spend more time in the transit system during the trip. Thus, for each origin station and destination 

station pair, we find the distribution of travel time by all trips passing this pair. We then convert each passenger’s 

travel time into a significance score by the quantile in the distribution. Similarly, we also define the time gap 

significance of region transitions.  

4.6 Historical Behaviors  

We compute the statistics (e.g., median and standard deviation) of the daily features observed over the last 

30 days for each passenger to quantify their historical behaviors. We use the median instead of the mean because 

the median is more robust in the presence of outliers, such as non-routine passenger behaviors. The standard 

deviation indicates the degree of variation of the daily behaviors of individual passengers. Regular passengers 

following routine trajectories normally generate statistics with less variation. Moreover, we also record the number 

of days (out of the recent seven days) when a passenger was detected as a potential pickpocket suspect. All features 

are summarized in Table 2. The statistics are calculated based on one-month’s data. We first found the values of all 

features of each day, and then summarized the mean and median by weekdays and weekends.  

5. SUSPECT IDENTIFICATION  

This section presents the key component of our thief footmark detection system. Specifically, to distinguish 

pickpockets from the regular passengers with high accuracy and low false-positives, we developed a two-step 

framework. 5.1 A Two-Step Framework The rationale for using a two-step framework for identifying pickpocket 
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suspects is as follows. On the one hand, since the majority of the passengers are not thieves, it is impractical to use a 

classification algorithm. Specifically, the percentage of confirmed pickpockets is extremely low in the passenger 

population. Simple heuristics like oversampling and under-sampling would only be helpful for handling moderate 

class imbalance, but not an imbalance as extreme as ours. Building robust machine learning models for such 

unbalanced data is still an active research area in the literature [28, 29, 30, 31]. Alternatively, utilizing anomaly 

detection algorithms, which are typically unsupervised, cannot scale well and may also lead to significant false 

positives, since many regular passengers who occasionally perform irregular activities may be misclassified as 

suspects. To address these challenges, we develop a two-step framework by unifying the unsupervised anomaly 

detection and supervised classification in a novel way. We show that the two steps can effectively utilize the 

supervised information, overcome the issue of an unbalanced class distribution, and reinforce the learning 

performances. The overall framework can predict the pickpockets with very low false-positives. In the two-step 

framework, we approximate the predictive function f(·) as f(x) = g(x)h(x), and 

                    

In other words, we first use function g(·) (the first step) to filter out regular passengers whose mobility 

patterns are typical of the majority of the passenger population. If the passenger associated with feature vector x is 

not filtered out (i.e., g(x) = 1), we then use function h(·) (the second step) to detect whether the passenger is a 

pickpocket suspect. In the following section, we develop the two steps (function g(·) and h(·)) in our framework. 
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5.2 Regular Passenger Filtering  

The first step in our framework is regular passenger filtering using an anomaly detection algorithm. The 

objective is to exclude regular passengers without any suspicious behaviors from later modeling steps. Therefore, 

we intentionally allow false-positives in this process. Many general purpose anomaly detection algorithms can be 

used to implement the filtering function g(·). However, two main challenges must first be addressed. First, 

pickpockets are a small fraction of the passenger population. Second, the data size is extremely large. There are 

millions of passenger records amassed daily. To efficiently locate the needles in the haystack, we take advantage of 

an undersampling-based ensemble learning method. Although undersampling can effectively balance the ratio of 

the anomalies in the data size, the sampled data might lose a degree of generality since only part of the original data 

will be used for predictive modeling. To improve the degree of generality with the undersampled and balanced data, 

we design the undersampling-based ensemble learning method. Specifically, given a base predictive model, we 

repeat the undersampling of the regular passengers M times, and each time we fit the predictive model and have a 

regular passenger filtering function gm(·), m = 1, 2, · · · , M. Then, given a new test passenger x, we have the 

following ensemble filtering function,  

                             

where wm is the mixing weight proportional to the expected accuracy of the individual filtering function 

gm(·). The choice for the base predictive model and the number of base models in the ensemble will be determined 

based on results from a validation dataset (details in Section 6). 

5.3 Suspect Detection  

The second step in our framework is suspect detection, which aims to eventually identify the suspected 

pickpockets. After the regular passengers were filtered in the first step, we were left with positive subjects as 

declared by the under sampling-based ensemble learning method. This positive group should include most, if not 

all, real suspects, and possibly many false-positives. However, after the step of regular passenger filtering, the 

number of the false positives are limited and comparable with the number of suspects. The second step further 

distinguishes these two subsets with supervised information verified by the social media or security agencies. 

Specifically, suppose there are Nb total subjects after filtering in the dataset {(xj , yj ) | j = 1, · · · , Nb}, where Nb � N, 

and yj = 1 if and only if the passenger associated with feature vector xj is a verified pickpocket, otherwise yj = 0. 

Therefore, to train the suspect detection model, we use the SVM method due to its superior detection accuracy and 

modeling flexibility [32]. SVM computes non-linear decision/classification boundaries using appropriate kernel 

functions and soft margins. The kernel function κ(·, ·) is defined as 

                                                        κ(x1, x2) = hφ(x1), φ(x2)i.  

The function φ(·) maps the original features into a high dimensional kernel space where the optimal 

decision boundary exists. Also, it can be shown that the optimization process requires κ(·, ·) instead of an explicit 

formulation of φ(·). In this paper, we use the popular Gaussian kernel:  

                                                     κ(x1, x2) = e −kx1−x2k 2/h .     (2) 
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                                 With the decision/classification boundary in the kernel space:  

                                                     h(x) = hw, φ(x)i + ρ, 

     

Here C is a trade-off parameter controlling the softness of the decision boundary. Both C and the kernel 

parameter h (a.k.a., bandwidth) in Equation (2) will be determined by cross-validation. 

6. DETECTING SUSPECTS IN REAL TIME 

 For real-world implementation, we can straightforwardly estimate the two-step model offline each day. 

With data newly available everyday, the re-estimated models can provide better identification performance. 

However, such a naive update procedure is not efficient enough in largescale data sets. To ensure that the system is 

practical for real-world usage, we adopted a real-time implementation of the regular passenger filtering step (see 

the shaded box in Fig. 2) with a dynamic ensemble mechanism, as illustrated in Fig. 12. 

 

More specifically, we improve the efficiency of regular passenger filtering by maintaining a large number of 

base filtering models gm(·), for m = 1, 2, · · · , M. Instead of computing these base filtering models independently 

every day, we dynamically update the ensemble to improve the efficiency. The key idea is to replace the most 

ineffective or irrelevant base models with new ones, while retaining the majority of the base models from the past. 

The utility of the model gm(·) is measured by the following utility function:  

                                                    um = λFm + (1 − λ)Rm,                                                                                            (5) 
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which strike for a balance between the effectiveness (Fm) and the relevance (Rm). Since gm(·) is essentially 

a binary classifier, its effectiveness Fm is measured by a classification performance metric, such as the F-score (see 

Equation (6)). For relevance, we compute Rm = ln 1 δm+1 , where δm is the “age” of the base model, measured as 

the number of periods between its creation and now. Intuitively, our relevance definition confers a higher utility to 

a newer model. Finally, λ ∈ (0, 1) is a parameter balancing the effectiveness and relevance, which can be chosen 

empirically with respect to the desired accuracy and the available computation capacity. With the utility defined, we 

dynamically rank the current base filtering models and replace the worst candidates with models estimated with 

newly available data. Our implementation replaces models with the lowest utility scores. 

7. A PROTOTYPE SYSTEM  

With the automatic feature extraction and two-step suspect detection model, we developed a decision 

support system for security personnel to easily spot pickpocket hotspots and apprehend suspects at the crime 

scenes efficiently. In particular, this prototype system was implemented using bootstrap5 , Java, and SparkQL. Fig. 

19 is a screenshot of the graphical user interface (GUI), which can be viewed on a computing terminal or a mobile 

device. The GUI has the following five basic components, which allow users to view suspect analytics at different 

levels of detail. 

 

• Statistics. Summary statistics about the transit system status are provided at the top of the screen, which 

include the total numbers of passengers, commuters, outliers, and suspects, respectively. Through various settings, 

the user is allowed to specify the time window for these statistics in terms of the number of days. 
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 • Passenger Flows. The density of passenger flows has a high correlation with pickpocket activities. The 

live state of passenger flow is shown with a heat map, where the density of passenger flow of each station is 

expressed by blending the color between green and red. (Redder lines indicate higher densities.) This map visually 

identifies higher trafficked areas that would be more vulnerable to theft 

. • Active Regions. Active regions of suspects at the city level is visualized in the “active regions” map. 

Indicated by blue flashing circles, these regions are found by calculating the centroids of a DBSCAN algorithm. By 

zooming in, the user can inspect a specific area. 

 • Suspect List. Passengers identified as suspects will be listed on the “suspect list.” Profiles of these 

suspects, such as smart card ID number, total travel time, riding frequency, the number of trips, and the number of 

short rides, will be displayed by default. Quantile score against the social norm, historical profile information, and 

system determined likelihood of a suspect, are also available. The user is allowed to choose which features to 

display and to sort.  

• Selected Suspect. When a suspect on the list is selected, his or her trajectory, as represented by linking 

the boarding and exiting stations, can be displayed in the “selected suspect” panel. The database is updated every 

day with newly collected transactions data and identified suspect records. The suspect detection model is pre-

computed daily, so detectives can obtain instant result when they interact with the system.  

7.1 Typical Passenger Behaviors  

As mentioned in the “passenger flow” function above, we visualize the passenger movement patterns on the 

city map to analyze the behaviors of different types of passengers. Fig. 20 provides examples of representative 

movement patterns in different passenger groups in Beijing on a typical day from 8:00 a.m. to 11:00 a.m. Each curve 

in the figure represents the transition between a pair of origin and destination regions, and the color represents the 

traffic density (red=high, green=low). The overall passenger flow is shown in Fig. 20(a), which provides a bird’s-eye 

view of the most dense traffic at the city level. We can see that the Huilongguan area, Tiantongyuan area, Military 

Museum, CBD area, and the Dongdan area have the highest densities. We can observe several other gathering 

regions, such as the Wudaokou area, Olympic Park area, and Beijing West Railway Station. Since passenger flows 

are mixed, certain special patterns are hard to discover, especially for travel anomalies. After applying our method, 

such patterns, which typically present remarkably distinctive features, can be revealed. For example, we could 

classify passengers by major categories of functional regions they visit. While most travelers present commuter 

patterns like residence-workplace sequences (61.2%), Figures 20(b), 20(c), and 20(d) show typical visitor 

passenger flow (3.2%), shopper passenger flow (3.8%), and thief passenger flow (0.03%), respectively. Since 

thieves comprise a tiny percentage of all passenger, they are almost always treated as anomalous data and are 

neglected. It is also worth noting that visitors patterns resemble thieve patterns in that they both visit many 

different places. However, visitors are more likely to take longer trips among scenic spots, which are captured in 

our framework to differentiate them from thieves. Fig. 20(b) shows that visitors frequently visit Yuanmingyuan, 

Tiananmen, and Nanluoguxiang, whereas Fig. 20(c) shows that shoppers tend to visit regions like Wangfujing and 

Xidan. Most normal travelers have clear directions, but as visualized in Fig. 20(d), pickpockets tend to wander 

randomly and make frequent stops without clear destinations. Thieves also tend to visit a mixture of functional 

regions, such as transit hubs (e.g Xizhimen), shopping regions (e.g., Wangfujing), and scenic spots (e.g., Gulou), 

whereas most regular passengers only visit one functional region during a short period of time. 
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8. EXPERIMENTAL RESULTS 

 In this section, we present experimental results employing our proposed framework. First, we describe the 

experimental environments and provide implementation details. We then demonstrate the effectiveness of our 

framework by comparing it to several baseline methods. 

8.1 Experiment Settings 

 In this subsection, we will outline our experimental environments and study design. This includes a short 

description on the platform, the baseline methods, and the performance metrics. 

 

Platform.  All offline experiments were conducted on a Windows Server 2012 64-bit system (4-CPU, each 

with 2.6GHz with Quad-Core, and 128G main memory). The realtime system was implemented on a Spark cluster 

with 10 nodes. Each node has a Intel i7-4790 CPU3.6GHz CPU with 8 cores, 2*8GB Kingston Memory, 2 TB SATA3.0 

hard drive, with a Centos 6.5 Operation System. All algorithms and our real-world system were developed with Java 

and Scala. 
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 Data Preparation. All experiments were conducted on real-world datasets described in Section 3. There 

were about 1.7 billion records collected between April and June in 2014. We eliminated passengers from the 

training set whose maximum number of daily records is no more than three. After removing duplicates and 

extremely infrequent riders, we had over 1.6 billion records remaining that involve approximately 6 million 

passengers over the three-month period. We split the data into a training set for model building and a testing set for 

evaluations. Specifically, for offline experiments, the training set covers three months (from April to June, 2014) and 

the test set derives from the following two weeks (in July 2014). For evaluating the real-time system, we let the 

models train incrementally and reuse data over time. Each day, there are about 14 million records collected from 

around 5 million individuals. 

 Baselines. Our method is compared with a variety of competing methods grouped into the following 

categories: • Classification Methods. The classification methods, including logistic regression (LR), decision trees 

(DT) [33], and SVM [32], are straightforwardly fit to the training set and evaluated with the test set. Since the 

proportion of positive instances is extremely low, the classification problem is unbalanced, and we expected to 

observe high Type II Error. In the experiments, we under-sample the negative instances to balance the data and 

improve the results. For each method, we repeat the sampling 10 times and report the averaged results. 

 • Anomaly Detection. Anomaly detection methods, such as one-class SVM (OC-SVM) [34] and local outlier 

factor (LOF) [20], seem more appropriate for our problem. Among them, LOF is unsupervised, finding outliers by 

measuring the local deviation of a given data point with respect to its neighbors. OC-SVM can be fitted in a 

supervised manner, with only the negative instances in the training set, to identify the suspects. 

 • Two-Step Methods. As previously mentioned, our approach is a TS method, consisting of a negative 

sample filtering and then applying a traditional classification step. For specific combination of techniques, we 

experimented a number of possibilities. For all of the methods with parameters, we optimized the parameters with 

10-fold cross-validation by further dividing the training set with 80% for model fitting and 20% for parameter 

validation. We separately evaluated the methods in both the offline mode and an online mode. In addition, to 

demonstrate the power of dynamic ensemble in the regular passenger filtering step, we compared it with an 

alternative approach to create balanced training sets using SMOTE [35]. Evaluation Metrics. Precision, recall, and 

the F-score were computed based on the test set to evaluate the performances of different methods. Precision is the 

number of correctly identified positives divided by the number of identified positives instances. Recall is the 

number of correctly identified positives divided by the number of all positive instances in the test set. And finally, 

the F-score is calculated as 

                                         

8.2 Modeling Performance  

Table 3 summarizes the performances of our method (with various two-step settings) and the baselines in 

both offline and real-time systems. In the offline mode, we arrived at several interesting observations from the 

modeling performance. First, the precision of one-step methods is generally low. In contrast, all the two-step 

combinations significantly improve the precision, with the OCSVM-SVM setup exhibiting the best performance. This 

observation shows that the two-step approach can effectively reduce the false-positives. Second, two-step methods 

also performed better in terms of recall and the F-score. Finally, the precision of all methods are low. This was 

intentional since we wanted to ensure a high recall. After all, our ground truth (i.e., flagged suspects) only consists 

of those confirmed pickpockets, whereas it is likely there are many more pickpockets that go unapprehended. With 
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an dynamic ensemble in the real-time implementation, while maintaining a high recall, the two-step model with 

LR+SVM specification performed the best, resulting in the highest F-score. For the real-time system, we separated 

two types of running time: the initialization time and the update time, both measured in seconds. The initialization 

time is relatively long, given that we need to train an ensemble of many base models. The LR+SVM model performs 

well overall in terms of running time.  

8.3 Parameter Tuning  

One of the most important parameters we needed to decide was the number of base classifiers to employ. 

Considering that the behavior of one person may change over time, occasionally even be abnormal, we needed to 

use a long period of transit records to extract features and train classifiers. 

In Fig. 13, we show the trend in performance as we increase the number of base classifiers. The graph 

illustrates that both the precision and the F-score changes as the number of base classifiers M grows from a smaller 

number to 241. When M grows beyond 241, the performance metrics stay level or start to decrease. Therefore, we 

chose M = 241 as the number of combination classifiers. 

 

According to the utility definition in Equation 5, the utility value depends on the relative importance of the 

F-score and the recall by the ratio of λ 1−λ . After experimenting with a number of possible values for this tradeoff 

parameter, as shown in Fig. 14, we can see that the modeling performance (i.e., F-score) reaches its peak when the 

ratio is at least 2 (i.e., when λ = 0.67). 

8.4 Feature Analysis  

To further study the discriminative power of the features, we evaluate the performance of our framework 

with different feature combinations. As shown in Fig. 15, we use D, S, and H to represent the daily behavior, social 

comparison, and historical behavior features, respectively. Most significantly, the precision of the daily behavior 

features is improved by the social comparison, and further by the historical behaviors. Such improvements can also 

be observed for metrics shown in the other subfigures. In Fig. 15, we also compared the modeling performances on 

weekdays and weekends. As expected, since human mobilities during weekends are more complicated, the 

detection accuracy of our method was slightly lower on weekends. For the real-time system, we evaluated the 

contribution of various combinations of features in a similar way. The result is shown in Fig. 16, which 

demonstrates that combining features helped improve the model performance. In particular, combining all three 

types of features led to the best performance in our experiments. 7.5 Example Trajectories In this section, we 

provide a few example trajectories (in blue lines) projected on the map for qualitative evaluation. To ensure 

individuals’ privacy, we chose densely populated areas so that no one was uniquely identifiable. We also placed the 
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actual location points to nearby points whenever we could to blur the actual locations visited. Each numbered box 

in a figure represents a station where the individual left a vehicle or boarded another one. The numbers in the 

boxes are sequence IDs. An example of a confirmed thief’s one-day trajectory is shown in Fig. 17. With all activities 

shown, we could clearly see that Pingguoyuan and Shijingshan subway stations 
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were  gathering regions for this particular thief. This was an important discovery, as it told detectives which 

regions were hubs for thieves and how many suspects were active in that area. To know who is the next target, it is 

necessary to first provide a track of a thief in the active areas in order to better enable detectives’ ability to catch 

thieves at the crime scene. Fig. 17 also reveals strong mobility patterns in thief activity. For instance, we see that 

Baimiao station, a hub transfer subway station north of Beijing, is considered a center by the thief, rather than a 

route to actively engage in pickpocketing. Although the thief will attempt to elude authorities by traveling to 

neighboring stations, the key finding is that he/she will return to the station eventually. To intuitively demonstrate 

the rationale of our approach, we provide a specific case study in Fig. 18. This figure shows the trajectories of two 

passengers during the Cherry Blossom Season of 2014 in Beijing. Fig. 18(a) shows the traces of one identified, 

confirmed pickpocket A, while Fig. 18(b) shows the traces of one Cherry Blossom tourist B. Both of these 

passengers are quite unusual in comparison with daily commuters, but our model can successfully distinguish 

between them based on the comprehensive features previous defined. In particular, the features by social 

comparison of A and B are quite different because there were many other Cherry Blossom visitors following the 

traces of B on that same day. In addition, the historical behavior of B is more in keeping with his/her home-work 

routines. 

9. CONCLUSION  

In this paper, we developed a suspect detection and tracking system by mining large-scale transit records. 

The system assists in identifying pickpocket suspects’ and enables active surveillance in high-risk areas. Specifically, 

we first constructed a feature representation for profiling passengers. Then, we established a novel two-step 

framework to distinguish regular passengers from pickpocket suspects. Finally, we leveraged real-world datasets 

from multiple sources for model training and validation, and implemented a prototype system for end users. 

Experimental results on real-world data showed the effectiveness of our proposed approach. 
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