
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1115

Survey Paper: Framework of REST APIs

Sujan Y M1, Dr. Shashidhara H R2, Dr. Rohini Nagapadma3

1Student , Networking and Internet Engineering , Dept. of EC&E, The National Institute of Engineering, Mysuru,
Karnataka, India

2Associate Professor, Dept. of EC&E, The National Institute of Engineering, Mysuru, Karnataka, India
3Professor, Dept. of EC&E, The National Institute of Engineering, Mysuru, Karnataka, India

---***--
Abstract - Discussions are a notable idea in administration
configuration to depict complex communications between a
customer and one or then again various administrations. The
REST building style compels the qualities of customers, servers
and their connections in REST structures, which truly affects
discussions in such frameworks. REST API is mainly used in
various industries and are used in cloud computing, Internet of
Things, and Micro services. Representational state transfer
(REST) is a type of software architecture, which has more
flexibility and is widely used in web services. REST determines
how the API looks like.

Key Words: RESTful web service REST, RESTful, Web
Services, API, HTTP, Web, Web Services Analysis, CRUD,
HMAC.

1. INTRODUCTION

Restful API is a simple, flexible and easy maintainable API
that is built on the REST architecture. Restful Architecture,
proposes the APIs from the client application in a stateless
manner. The client can perform different operations using
the Restful service. The underlying protocol for REST is
HTTP [3]. REST stands for Representational State Transfer.
The key abstraction of information in REST is a useful
resource. Any records that may be named may be a useful
resource: a report or picture, a temporal service, a group of
different assets, a non-virtual item (e.g. someone), and so
forth. REST uses a useful resource identifier to discover the
specific resource worried in an interaction between
components. Resources have relationships with different
resources and a fixed of techniques or verbs to perform
between those resources. Then you may have a group of
sources that could interact as a group with one or extra
sources or collections.

REST architecture is based on seven properties [9]:

•Performance – different elements interact and describes the
ability of the system.
•Scalability - supports large number of elements.
•Simplicity - easy interacting interfaces.
•Modifiability - changing of the components as per the need.
•Visibility - clear communication between components.
•Portability - of the data-filled code.
•Reliability - resistance to fail at system level.

2. RESTFUL KEY ELEMENTS

The key elements of a RESTful implementation are as follows
[1]:

Resources – The first key element is the resource. Let us
assume the example of a server containing the data of several
employees. Let us assume the URL of the web application is
http://aaa.bbb.com. So in order to access an employee record
resource via REST, one can use the command
http://aaa.bbb.com /employee/1 - this command displays
the data of the employee 1 that is stored in the web server
and fetches the data from the server in different formats such
as XML or json.

Request Verbs - The request verbs describes what needs to
be done with the data that is obtained from the server. The
browser uses a GET request to instruct the system to get or
fetch the data from the server. There are different other
request verbs that can be used other than GET they are GET
PUT POST DELETE So in the example
http://aaa.bbb.com/employee/1 , the browser is actually
using a GET Verb because it wants to get the details of the
employee record.

Request Headers – Headers are the different additional
information that is being sent along with the data this
headers also contains the different format in which the data
needs to be fetched. The headers also consists of the
different authorization and authentication methods used.

Request Body - Data is posted with the request. Data is
normally sent in the request when a POST request is made to
the REST web service. In a POST call, the new data that is
sent is added to the server if the data is not present in the
server before. Therefore, the request body contains the
details of where the new data needs to be added in the web
server.

Response Body –Response body is the body or the details of
the response that we get from the request that is being sent.
Therefore, in our example, if we were to query the web
server via the http://aaa.bbb.com /employee/1, the web
server might return an XML document with all the details of
the employee in the Response Body.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1116

Response Status codes – Response status code are those
codes that indicates the status of the response from the web
server. There are different codes that indicates the status of
each response. For example, the code 201 indicates that the
new resource has been created in the web server without
error.

REST defines six constraints, which make any web service –
a true RESTful API [5].

A. Uniform interface
B. Client–server
C. Stateless
D. Cacheable
E. Layered system
F. Code on demand

A. Uniform Interface

A resource in the system should have only one logical URL,
and that should provide a way to fetch related or additional
data having uniform interface make it easy to be operated
with different operating system and different interfaces.

B. Client-Server
The client and server technique is used to fetch the data in
the REST API process. The client sends a request to the
server and the server responds back with the data that is
stored in it.

C. Stateless
Client-server interacts stateless. The client server
architecture that is mainly used in the REST API does not
contain the information of the any HTTP request and the
history of the calls and the session details.

D. Cacheable
The cache is used in the web service in order to fetch the
data from the server in a quick manner so that the
transaction speed of the process or the system would be
faster and the results could be used in a faster way by the
other sources.

E. Layered System
REST uses the layered system architecture. The REST
architecture comes in the application layer of the OSI model.

F. Code on Demand
The server can extend the functionality of the client on the
requirement of the user and can add the functionality on the
run time.

3. CLIENT SERVER

The client-server architecture is also termed as a network-
computing structure because every request and their
associated replies are distributed over a network. [4]. In the
client server mode the client and the server interacts in a
very meaningful way in order to process the data the client

server architecture is a similar model to master and slave
system. In the client server mode the client sends the request
to the main or the central repository server the server
processes the data, searches the data in the server memory,
and sends the data back to the client for it to use. The client
and the server can be connection less or connection
oriented. There are different scheduling methods in order to
process the data from the client. The client server
architecture - client sends the data to the server, and the
server manages hosts and delivers the data to the client.

Fig-1: Client Server Architecture

4. RESTFUL CONVERSATIONS

A Restful discussion commonly means many correspondence
or collaboration exercises between at least two members in
the framework. Concerning REST, we center on the
correspondence between a customer and a Restful Web API,
i.e. a lot of resources. Discussions between a customer and
many resources, what we call Restful discussion, can be
described as follows.

There are two sorts of individuals in a Restful conversation.
Clients are communicating with an API to fulfill a specific
target. Resources are the structure squares of each Soothing
Web API; they give a uniform interface enabling to get and
adjust their state. A participation between a client and an API
may realize the creation or deletion of its advantages, or in
the recuperation and update of the depiction of its benefits.

The correspondence natives used in a conversation are given
by the uniform interface of the REST plan. In the occasion of
APIs using the HTTP convention, every correspondence is
begun by the client and involves an interest followed by a
response message. Along with the benefit identifier, every
sales message joins the HTTP activity word (e.g., GET, PUT,
POST, DELETE) [2] characterizing the movement to be
performed on the advantage.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1117

5. HTTP METHODS FOR RESTFUL SERVICES

Fig- 2: RESTAPI Overview

The four main HTTP methods can be mapped to CRUD
(Create, read, update and delete) operations as follows [6]:

A. GET.

B. PUT.

C. POST.

D. DELETE.

E. PATCH.

A.GET

The GET method is to retrieve the requested information

from the server and is identified by the Request-URL. If the

Requesting-URL refers to a data-processing process, then the

data is returned by the requesting entity as the response,

unless that text happens to be the output of the process. Use

GET requests to retrieve resource

representation/information only – and not to modify it in any

way. It is said to be safe method because it does not cause any

changes to the resources stored.

Ex: HTTP GET http://www.aaabbbccc.com/users/123.

B.PUT

Use PUT APIs is primarily used to update existing resource (if
the resource does not exist, then API may decide to create a
new resource or not). If a new resource has been created by
the PUT API, the origin server MUST inform the user agent via
the HTTP response code 201 (Created) response and if an
existing resource is modified, either the 200 (OK) or 204 (No
Content) response codes should be sent to indicate successful
completion of the request.

Ex: HTTP PUT http://www.aaabbbccc.com/users/123.

C.POST

Use POST APIs to create new resources, i.e., the data is strictly
created in the server .Talking strictly in terms of REST; POST
methods are used to create a new resource into the collection

of resources. Ideally, if a resource has been created on the
origin server, the response SHOULD be HTTP response code
201 (Created) and contain an entity which describes the
status of the request and refers to the new resource, and a
Location header.

Ex: HTTP POST http://www.aaabbbccc.com/users/123.

D.DELETE

DELETE APIs are utilized to DELETE assets. DELETE
activities are idempotent. On the off chance that you DELETE
an asset, it is expelled from the assortment of assets. Over and
again calling DELETE API on that asset will not change the
result – nevertheless, calling DELETE on an asset a
subsequent time will restore a 404 (NOT FOUND) since it was
at that point evacuated.

Ex: HTTP DELETE http://www.aaabbbccc.com/clients/123.

E.PATCH

HTTP PATCH requests are to make partial update on a
resource. If you see, PUT requests also modify a resource
entity so to make clearer – PATCH method is the correct
choice for partially updating an existing resource and PUT
should only be used if you’re replacing a resource in its
entirety.

Ex: HTTP PATCH /users/1

[{“op”:“replace”,“patch”:“/email”,“value”:“new.aaa@bbb.org”}]

Fig-3: HTTP Methods

6. AUTHORIZATION OF REST API

The difference between authentication and authorization is

important in understanding how RESTful APIs are working

and why connection attempts are either accepted or

denied:

http://www.aaabbbccc.com/users/123
mailto:new.aaa@bbb.or
mailto:new.aaa@bbb.or
mailto:new.aaa@bbb.or

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1118

 Authentication is the verification of the credentials
of the connection attempt. This process consists of
sending the credentials from the remote access client
to the remote access server in an either plaintext or
encrypted form by using an authentication protocol.

 Authorization is the check that the connection
endeavor is permitted. Authorization happens after
successful confirmation.

6.1 Basic Authorization

In this method, the sender places a username: password into
the request header. The username and password are
encoded with Base64, this encrypted value is the cipher that
is converted using Base 64 and this encrypted cipher
prevents the different attacks and is safe for transmission.
APIs that use Basic Auth will also use HTTPS, which means
the message content will be encrypted within the HTTP
transport protocol. When the API server receives the
message, it decrypts the message and examines the header.
After decoding the string and analyzing the username and
password, it then decides whether to accept or reject the
request.

6.2 HMAC (Hash-based message authorization code)

HMAC stands for Hash-based message authorization code, is
a stronger type of authentication, more common in financial
APIs, and is used in banks. With HMAC, both the sender and
receiver know a secret key that no one else does.i.e. it uses
symmetric encryption. The sender creates a message based
on some system properties. The message is then encoded
by the secret key and passed through a secure hashing
algorithm. The resulting value, referred to as a signature, is
placed in the request header. When the receiver (the API
server) receives the request, it takes the same system
properties and uses the secret key (which only the requester
and API server know) and SHA to generate the same string.
If the string matches the signature in the request header, it
accepts the request. If the strings do not match, then the
request is rejected.

6.3 OAuth (2.0)

OAuth is an authentication protocol that allows a user a
third- party application access to their information on
another site. [7]The most common implementations of
OAuth use one or both of these tokens instead:

 Access token: The Access tokens are those tokens that
are sent along the header and REST\api key.

 Refresh token: optionally part of an OAuth flow, these
refresh tokens retrieve the new tokens if the access
tokens are expired. OAuth2 combines Authentication and
Authorization to allow more sophisticated scope and
validity control.

Fig- 4: OAuth Authorization

OAuth 2.0 provides several popular flows suitable for
different types of API clients:

 Authorization code – The Authorization code
are those codes that is mainly used to authorize
the transaction and to maintain the data
confidentiality. These codes are mainly used for
financial transactions.

 Implicit – This stream requires the customer to
recover an entrance token straightforwardly. It is
helpful in situations when the client's
qualifications cannot be put away in the
customer code since the outsider can effortlessly
get to them. It is appropriate for web, work area,
and versatile applications that do exclude any
server segment.

 Resource owner password – Resource owned
passwords are those passwords that mainly
contains the adding the credential of the owner
and the password. These resources are protected
requires the authorization.

 Client Credentials – The client credentials are
requested by the server in order for the client to
connect to the server the server manages the list
of client’s username and passwords and matches
them according to the data that is being sent by
the client.

 Authorization Server-The server that
authenticates the Resource Owner, and issues
Access Tokens after getting proper
authorization. In this case, Auth0.

6.4 Working of OAuth

 The first website connects or interacts with the
second website using OAuth protocol in order for
the connection between them [8].

 The second website then generates or creates the
password, access tokens and the different secret
keys that are used to authenticate to the first
website and these keys that area generated by the
second website is shared among the different
users in order for the authentication.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1119

 The first site then issues the secret key and the
authentication code to the client end user
software.

 The client’s software presents the request token
and secret to their authorization provider.

 If not already authenticated to the authorization
provider, the client then authenticates. After
authentication, the client is asked to approve the
authorization transaction to the second website.

 The user approves (or their software silently
approves) a particular transaction type at the first
website.

 The user is given an approved access token (notice
it is no longer a request token).

 The user gives the approved access token to the
first website.

 The first website gives the access token to the
second website as proof of authentication on behalf
of the user.

 The second website lets the first website access
their site on behalf of the user.

 The user sees a successfully completed transaction
occurring.

 OAuth is not the first authentication/authorization
system to work this way on behalf of the end-user.
In fact, many authentication systems, notably
Kerberos, work similarly. What is special about
OAuth is its ability to work across the web and its
wide adoption. It succeeded with adoption rates
where previous attempts failed.

7. CONCLUSIONS

Restful engine is essentially used to create lightweight, quick,
versatile and simple to keep up web benefits that regularly
use http as methods for correspondence. In this paper, we
introduced many of REST API's designers utilized for making
a site or some other framework. In This paper, we have
additionally introduced the approval procedures like OAuth
Authorization. Web is the most well-known stage for
business, numerous organizations are setting their
organizations on the web and Ecommerce is the most
mainstream among them. Subsequently, the framework is
created to manufacture an adaptable REST API for
Ecommerce to serve any frontend customer. Programming
interface ease of use. REST API documentation device
designers can use our discoveries to improve reusable
apparatus support for programming engineers.

REFERENCES

[1] Neumann, A., Laranjeiro, N., & Bernardino, J. (2018).
An Analysis of Public REST Web Service APIs. IEEE
Transactions on Services Computing, 1–1. J. Clerk
Maxwell, a Treatise on Electricity and Magnetism, 3rd
ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[2] Li, L., & Chou, W. (2015). Designing Large Scale REST
APIs Based on REST Chart. 2015 IEEE International
Conference on Web Services.

[3] Li, L., & Chou, W. (2011). Design and Describe REST

API without Violating REST: A Petri Net Based
Approach. 2011 IEEE International Conference on
Web Services.

[4] Djossou, C. (n.d.). A client-server based architecture

for communication between expert systems.
Proceedings ICCI ̀ 92: Fourth International Conference
on Computing and information

[5] Haupt, F., Leymann, F., & Pautasso, C. (2015). A

Conversation Based Approach for Modeling REST
APIs. 2015 12th Working IEEE/IFIP Conference on
Software Architecture.

[6] Haupt, F., Leymann, F., Scherer, A., & Vukojevic- Haupt,

K. (2017). A Framework for the Structural Analysis of
REST APIs. 2017 IEEE International Conference on
Software Architecture (ICSA).

[7] Yang, F., & Manoharan, S. (2013). A security analysis of

the OAuth protocol. 2013 IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing
(PACRIM).

[8] Noureddine, M., & Bashroush, R. (2011). A

provisioning model towards OAuth 2.0 performance
optimization. 2011 IEEE 10th International
Conference on Cybernetic Intelligent Systems (CIS).

[9] Stoudenmier, S., & Olmsted, A. (2017). Efficient

retrieval of information from hierarchical REST
requests. 2017 12th International Conference for
Internet Technology and Secured Transactions
(ICITST).

[10] Solapurkar, P. (2016). Building secure healthcare

services using OAuth 2.0 and JSON web token in IOT
cloud scenario. 2016 2nd International Conference
on Contemporary Computing and Informatics
(IC3I).

