
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1260

Implementing Flexray Controller for Flexray Data Logger

Tukaram Tirvir1, Supriya Shanbhag2, Sonal Suryavanshi3, Veeresh Ambe4

1, 2, 3 Department of Electronics & Communication Engineering, KLS Gogte Institute of Technology, Belagavi, India
4 Vayavya Labs Pvt. Ltd., Belagavi. India

--***---

Abstract - The work presented in this paper deals with
the implementation of the Flexray controller on FPGA for
Flexray data logger. The Flexray controller demonstrates
the transmission of data from user (Graphical user interface
(GUI)) to the Flexray bus, and also the reception of data
from Flexray bus to the user (GUI). The design of the Flexray
controller primarily involves the timing calculation so that
the parameter values of flexray controller could be decided
in accordance with the baudrate. The timing calculations
largely affect the number of static slots to be used per cycle
of Flexray, since this is vital in avoiding any overlap or loss
of data between the number of data bytes transmitted or
received per slot. An attempt is made to design a novel
frame format for the frames received from Flexray bus,
wherein timestamp of a received frame as well as direction
of communication is declared. Two modules are designed
viz. TX_reg and Tx_gui_module for storing and transmission
of frames. Flexray controller implemented in the present
work is able to test wakeup pattern and can also send the
wakeup pattern and acts as coldstart node which can send
startup frames. Results mentioned in the paper are
simulation results in which reception part is carried out
forcefully for demonstrating the working of reception.

Keywords: Flexray controller, Flexray frame, GUI, UART
controller, wakeup, coldstart node, startup.

1. Introduction

As technology is advancing day by day, sports and
luxury cars are using more and more sensors to meet the
increasing demands. Number of ECUs used in the cars to
provide automotive comfort to the customers has
increased drastically than the ECUs that were used before.
However, with comfort there comes complexity. Hence, as
the modern cars have increased their comfort by
increasing ECUs they face the hurdle of lack in speed of
data transmission between the ECUs. This is mainly
because they employ CAN bus system that provides 1
Mbps of speed which is not sufficient for vast amount of
data. In order to overcome this problem, Flexray bus
system was introduced by Flexray consortium.

Flexray is a time triggered protocol which has its own

frame format [1] transmitted over a single slot. TDMA
method is used by flexray protocol due to which each node
has its predefined slot to transmit the frame. Each flexray
controller has 64 communication cycles; each cycle has
one static segment, one dynamic segment, one symbol
window and a network idle time. Each static segment has

1024 slots i.e. 1024 frames. As it is time triggered protocol
each node gets a fixed slot in which the node can transmit
[1].

In a flexray bus system multiple nodes create a cluster
in which values of some parameters must be same so that
nodes can communicate with each other efficiently. To
start communication in cluster at least a cluster must have
two nodes which can send startup frames [1, 2] known as
coldstart node. Flexray controller mentioned in this paper
transmits two startup frames on different slots so that
receiving node receives two unique startup frames and as
a result it integrates with the cluster.

Flexray controller can wake up the channel according
to user (GUI). Flexray controller is implemented on FPGA
as FPGA provides better flexibility in terms of modifying
the behavior of the Flexray controller. Implementing
Flexray on FPGA also helps to test some extra features of
Flexray driver which are not possible by general Flexray
controller. Due to use of FPGA it is also possible to add
other IP core along with Flexray IP core.

2. Related Work

Sergi Kosav has given a brief explanation on nodes,
protocol operation controller, wakeup and startup in his
“Flexray communication Protocol (wakeup and startup)”
report [2]. Report states that to wake the channel a
wakeup pattern comprising of a defined number of
wakeup signals has to be transmitted. To start a cluster
there must be at least 2 coldstart nodes which must
transmit startup frame in different slot ids.

Jan Malinsky and Petr Kocourek implemented an
education system which provides advanced features of
flexray standard [3]. By using this system Flexray
synchronization mechanism in operation was illustrated.
System developed was suitable for training in Flexray
technology. Main contribution through this system was
that the system has the ability to influence the frequency
of time base in order to test the SM behavior. Test is
carried by using 10 nodes which are configured into a
panel with one node acting as a motherboard.

Martin Patak has implemented Flexray controller on
FPGA [4] which is able to work with Nios 2 bus processor
which has 32 bit parallel interference. New commands to
wake the channel and to start the cluster were
implemented in this work. Flexray controller implemented
was able to transmit wakeup signal as well as act as a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1261

coldstart node. This controller can also test some extra
features like wakeup which is not possible by general
flexray controller.

3. Methodology

3.1 Project requirement

Flexray controller is implemented on Xilinx ZC702

FPGA board; to transmit and receive data from Flexray bus
transceiver is used. Coding is carried by using VHDL
language on Vivado IDE. Logic analyzer along with
PulseView is used for testing and debugging of signals.

3.2 Project Design

Fig. 1: Modular design

Figure 1 show modules required for flexray controller
to implement on FPGA for Flexray data logger.

All the frame entries received from UART controller

which are to be transmitted are first stored in TX_reg.
After storing all the entries TX_reg then transmits them
according to slot id after transmitting wakeup and startup
signal onto Flexray bus. This module also gets some
informative signals from the Flexray core.

Flexray core is the heart of the system where all the

execution of command takes place, core provides
macrotick and cycle count with the help of which TX_reg
can transmit the data.

RX_reg is module which is responsible for receiving

Flexray Frame from Flexray bus and giving it to
Tx_gui_module.

Tx_gui_module stores the acknowledgement of

transmitted frame and the Received frame so that it can be
sent back to GUI via UART controller for display. This
module also stores status.

3.3 Contribution to the project

Timing calculation
Figure 2 shows the timing calculation which helps to

determine max no. of slots which can be used as well as
max number of bytes per slot that are allowed.

Fig. 2: Timing calculation

Frame format
Frame format shown in Table 1 is for data which is

received from Flexray Bus.

R Sync
Frame

Startup
frame

Frame
ID

PL Cycle
count

Time
Stamp

Data

Table 1: Frame format

‘R’ - direction (1 Byte)
Sync Frame - 1 bit
Startup frame - 1 bit
Frame ID - Frame ID (8 bits)
PL - Data Length (5 bits)
Cycle count - Cycle Count (6 bit)
Time Stamp - 43 bits
Data - Data
Total (Bytes) - 9bytes + Data bytes

Modules

1. TX_reg

Data from UART controller is stored in this register
and processed. Transmission of frame is also carried out
by this module. This module has more than one process
out of which one process is storage and start of
transmission which is shown and explained in figure 3
with the help of state diagram.

Fig. 3: TX_reg

As shown in figure 3 process shifts to idle state, when
reset is set to 0. There is a shift of state from idle to storing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1262

when process gets go_to_storing which is triggered from
Flexray core. After storing is completed, state shifts to
tx_symbol where the module transmits the symbol
(wakeup and CAS). After transmission of symbol the state
shifts to st_tx where actual frame is transmitted. In any
state if the module gets the halt_req it shifts to idle state.

2. Tx_gui_module
Whenever a frame is transmitted a back

acknowledgement has to be transmitted to the GUI. The
acknowledgement of transmitted frame and received
frames have to be transmitted to GUI once the static
segment is finished so due to that the acknowledgement as
well as the received frame has to be stored somewhere.
Hence the module has a storing process which is explained
in figure 4 with the help of state machine

Fig. 4: Tx_gui_module

Whenever transmission or reception of frame is
started, process changes from idle to wait_for_tx_rx_data.
When there is success of frame transmission or reception
process shifts to storing state where it stores the
acknowledgement of transmitted frame and received
frame. Process shift to idle state when data is transmitted
back to GUI that is transmitted_data signal is triggered or
scyclestart is triggered

Module also has one more process which stores the

status of POC, wakeup, and startup of the POC module
along with timestamp. Storing is carried by using case
statement. As soon as static slot is finished the process
trigger st_tx_gui this indicates UART controller to transmit
the data to GUI.

3.4 Problems Faced
The error displaying mismatch registers length

message occurs at synthesis level. This happens when we
try to copy data from one register of specific length viz. 2
bytes to another register of length more than or less than
2 bytes. Another error occurs at implementation level
called the Net overdriven problem; all the registers in
FPGA are connected with lines known as Nets. When a
single Net gets the data from two different register at a
time with different logic (0 or 1) than the Net gets
overdriven by multiple logic due to which the output
becomes undefined in simulation and in message window
we get Net overdriven message.

4. Results

The results obtained are presented in two parts. The

first part deals with transmission of wakeup, startup and
frame while the second part deals with reception of frame
from Flexray bus. As the results are derived by simulation,
reception of frame is obtained forcefully. Actually
transmission and reception of frame on same slot id is not
possible if a node is transmitting wakeup pattern or CAS
symbol and if it receives wakeup pattern or CAS symbol on
same channel then transmission is stopped. So the motive
behind receiving frame, wakeup pattern and CAS symbol
forcefully is to just demonstrate the working of reception
module.

1. Wakeup pattern, CAS symbol and frame transmission

Fig. 5: WUP pattern

 Figure 5 shows the transmission of wakeup pattern
which has multiple wakeup symbols when
send_wakeup_req is triggered. Wakeup pattern is used to
wakeup channel A or B for communication. Wakeup
symbol is a signal which is idle for some period and then
low for some period. The period of idle and low is decided
according to the baudrate. One Wakeup symbol of wakeup
pattern shown in fig 5 is 90*gdbit idle and 60*gdbit low.
gdbit = 0.2 us.

Fig. 6: CAS symbol

As soon as wakeup Pattern is transmitted CAS is
transmitted to start the communication. CAS symbol is a
signal which is low for some particular time period. Again
this period is decided on baudrate. CAS symbol is
calculated by adding 2 term; gdtsstransmitter which is
11gdbit and cdCAS which is 30gdbit. So CAS symbol shown
in figure 6 is low for 41gdbit

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1263

Fig. 7: Frame transmission

 As shown in figure 7 after CAS symbol is transmitted,
controller transmits startup frame in a given slot id. In
frame shown in above fig has slot id 1. The controller
determines the respective slot in which the frame has to
be transmitted by macrotick which starts running as soon
as CAS symbol is transmitted. Each frame gets its
macrotick (gdActionpointoffset) number with respect to
its frame id. When the respective macrotick arrives frame
is transmitted. In Flexray there are 64 cycles in each cycle
the number of slots can be decided by user, in this case the
number of slots per cycle is 5, which means 5 frames can
be transmitted in one cycle. To start a cluster, a controller
must transmit 1 frame for 4 cycles and then after 4 cycles
2 frames with different slot ids for rest of the cycles. After
8 cycles another node gets integrated with this node and
the cluster starts.

2. Wakeup pattern, CAS symbol and Frame reception

Fig. 8: WUP pattern

As shown in figure 8 Wake pattern is received on RX_A
pin. System will only receive the wakeup pattern when
idle and low period of wakeup symbol is same at both the
ends, if not then the system will not recognize the wakeup
pattern.

Fig. 9: CAS symbol

As shown in figure 9 CAS symbol is received on both
channels that is RX_A and RX_B. In this case also system is
able to recognize CAS symbol when the low period of CAS
symbol is same at both the ends.

Fig. 10: Frame transmission and reception

After 8 cycles, as soon as another node gets integrated
with our node, communication starts. Data frames can be
received as well as transmitted as shown in figure 10.
Frame id used by our node cannot be used by another
node.

5. Conclusion and Future work

Previous work carried on Flexray provides a system

for testing and maintaining the synchronization of clock
[3]. Another work [4] describes a system built to work as a
Flexray logger; however it fails to work as more than one
node. The system described in the present work addresses
this problem and is able to work as more than one node. It
helps to perform some basic testing such as wakeup
pattern and is able to work as coldstart node which can
send startup frames and also be able to work as logger
which can read and write data from/to the flexray bus.
The system works in static segment where data has to be
first stored and then is transmitted repeatedly. Further
work can be extended to modify this system in such a way
that it also works in the dynamic segment where data is
transmitted as soon GUI transmits.

References

1. FlexRay Consortium, FlexRay Protocol Specification
V2.1 Rev.A, 2005.

2. Sergi Kosav, “Flexray communication Protocol
(wakeup and startup)”.

3. Jan Malinsky, Petr Kocourek, “Demonstrational system
for training in flexray communication”, XIX IMEKO
World Congres, Fundamental and Applied Metrology,
Lisbon, Portugal, September 6_11, 2009.

4. Martin Patak, “FlexRay controller”, Prague, 2012.

