
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1349

Decomposition and Modularity in Software Systems

Anmol Gaba1, Dr. G N Srinivasan2

1Department of Information Science and Engineering, RV College of Engineering, Bengaluru, Karnataka, India
2Professor, Department of Information Science and Engineering, RV College of Engineering, Bengaluru,

Karnataka, India
---***--

Abstract - This paper ventures into the discussion about

software decomposition and the related modularity aspects
necessary for the development of modern software
architectures. There has been an evident rise in the efforts
by organizations to develop and master the standard
practices, be it agile or the regular waterfall model. In
relation to this , modern programming frameworks need to
develop consistently so as to abstain from getting less
helpful, as it is in the case of many legacy systems riddled
with the technological debts. Be that as it may, rehashed
changes in the product may block the internal nature of the
framework. Seclusion of the program modules is viewed as a
significant part of a decent internal quality, and the useful
decomposition is a methodology that empowers to
accomplish great particularity. Nevertheless, existing
methodologies for useful deterioration overlook
implementation endeavors, and this may cause a
circumstance where the necessary changes are too
exorbitant to even think about implementing. In this paper
we portray a way to deal with useful deterioration for
programming design advancement considering additionally
the usage endeavors.

Key Words: Software Modularity, Decomposition, Legacy
Software, Modern Systems, System Architecture

1. INTRODUCTION

Programming frameworks must develop after some time,
else they continuously become less helpful. When a
framework is discharged, it constantly changes, for
example because of developing client prerequisites
(perfective changes), bug fixes (restorative changes), stage
modifications (versatile changes), or revision of inactive
blames before they become operational issues (preventive
changes). Thus, the framework floats away from its
underlying engineering because of the developmental
changes.

A significant part of decent programming engineering is its
measured quality. A framework may at first comprise
exceptionally durable subsystems with low coupling
between them. Be that as it may, as greater usefulness is
added to the framework, their coupling will in general
increment and their union abatements. Consequently the

framework turns out to be less reasonable for engineers,
bringing about diminished quality and a framework that is
progressively hard to keep up.

Programming engineering is the significant level plan and
structure of the product framework. While planning the
framework is speedy, reasonably contrasted and building
the framework, it is basic to get the design right. When the
framework is constructed, if the engineering is damaged,
wrong, or only deficient for your necessities, it is
amazingly costly to keep up or broaden the framework.

The substance of the engineering of any framework is the
breakdown of the idea of the framework all in all into its
including parts, be it a vehicle, a house, a PC, or a product
framework. A decent engineer likewise recommends how
these segments collaborate at run-time. The
demonstration of recognizing the constituent parts of a
framework is called framework decay.

2. LITERATURE SURVEY

In [1] authors find that in the plan advancement of
programming improvement measured quality has
consistently had a solid effect. It is seen that despite the
fact that firmly coupled parts are more enthusiastic to
keep up; they have a high probability of endurance and
use in resulting adaptations of a planned worldview.
Despite the fact that they streamline advancement, they
experience more shock changes to their reliance
connections that are not related to new usefulness. They
become "more enthusiastic to increase," in that the new
segments included in every rendition are more secluded
than the first heritage structure.

In [2] it is seen that long-running programming
frameworks experience the ill effects of programming
disintegration, because of their consistent advancement to
meet new or evolving necessities, seriously constraining
their viability. Relocating programming frameworks, for
example moving heritage frameworks into present day
conditions and advancements without evolving usefulness,
is a key strategy of programming development, and serves
to continue existing programming frameworks
operational. Organized movements take into consideration
moving set up programming answers for bleeding edge
innovation, without thinking about the fundamentally

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1350

higher dangers of building up another framework without
any preparation.

In [3] authors examine the procedure of ceaseless support
movement and its motivation: the wellsprings of
transformative weight on computer applications and
projects. It proceeds to characterize programs as indicated
by their relationship to nature in which they are executed.
The existence cycle forms are likewise quickly talked
about. Prologue to laws of Program Evolution defined after
the quantitative investigations of the development of
various frameworks is made. At long last a model is given
which shows the utilization of Evolution Dynamics models
and the connection to program discharge arranging.

In [4] the paper portrays a way to deal with functional
decomposition for programming design development
considering additionally the execution endeavors. There is
a requirement for consistent advancement of
programming frameworks so as to abstain from losing use.
Be that as it may, persistent changes in the product may
prompt annihilation of the framework quality and
helpfulness. Seclusion is viewed as a significant angle to
accomplish a decent programming quality, the useful
disintegration is a methodology that accomplishes it
better. All things considered, existing methodologies for
useful disintegration may make the necessary changes the
product too expensive to even think about implementing,
as they regularly will in general overlook the hidden usage
endeavors.

The discussion of the paper in [5] talking about a PhD
research examine venture tending to many key difficulties
concerning Microservice Architecture (MSA) lead by the
accompanying variables: sway on the procedure of
movement of the current applications towards MSA,
examination on a depiction language for structuring and
investigating designs, the key properties of microservice
models. The essential commitment is precise mapping to
concentrate on architecting microservices acted so as to
comprehend the ebb and flow condition of the exploration
and the fundamental potential holes in the region.

A few measurements discussed in [6] for every one of five
sorts of programming quality measurements: item quality,
in-process quality, testing quality, upkeep quality, and
consumer loyalty quality are assessed. The primary
commitment of this work is the simple and extensible
answer for the programming nature of approval and
confirmation in the product improvement process. In this
way, we utilize formal methodologies so as to depict the
essential parts of the product. This formalization bolsters
the assessment of the measurements or estimation level
themselves.

3. METHODOLOGY

The following methodology is followed for decomposition:

1. One method of performing software
decomposition is to have the same number of
administrations as there are varieties of the
functionalities. This disintegration prompts a blast of
administrations, since a conventionally estimated
framework may have several functionalities. In addition to
the fact that you have an excessive number of
administrations, yet these administrations regularly copy
a great deal of the basic usefulness, each tweaked to their
case. The blast of administrations perpetrates a
disproportional expense in combination and testing and
expands generally speaking unpredictability.

2. Another software decomposition approach is to
lump every single imaginable method of playing out the
activities into super administrations. This prompts
swelling in the size of the administrations, making them
excessively intricate and difficult to keep up. Such god
stone monuments become an appalling dumping reason
for every single related variety of the first usefulness, with
perplexing connections inside and between the
administrations.

3. The third approach, offering a basic yet incredible
strategy for breaking down a framework, functional class
disintegration (FCD) produces a design that is more strong
than customary item situated deterioration for a few
programming building assignments. A half and half
technique that incorporates organized examination with
an OO approach, FCD recognizes classes in corresponding
with breaking down the framework into a chain of
importance of useful modules. As of late, engineers
stretched out FCD to incorporate UML ideas. Valuable for
apportioning a framework for dispersion, the FCD pecking
order gives a system to control improvement in a
conveyed programming building condition. It likewise
recognizes and coordinates segments in segment based
turn of events and supports the framework life-cycle
upkeep stage.

There are numerous other methodologies or techniques to
modularize the system. A single method or a combination
of these can be undertaken in the initial stages of the
program itself so as to build out the system according to
the planning commissioned by the development team.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1351

Fig -1: Software Development Process

Exceptionally coupled are free or practically autonomous.
Modules are autonomous in the event that they can work
totally without the nearness of the other. The more
associations between modules, the more reliant they are
as more information around one module is required to
comprehend the other module. In general, modules firmly
coupled on the off chance that they utilize shared factors
or on the off chance that they trade control data. Free
coupling if data held inside a unit and interface with
different units by means of parameter records. Tight
coupling is needed whenever information is shared
globally.

Cohesion is a measure of how well modules fit together. A
component should implement a single logical function or
single logical entity. All the parts should contribute to the
implementation. Temporal cohesion, Procedural cohesion,
Communicational cohesion, Sequential cohesion,
Informational cohesion, Functional cohesion are the
different types possible.

Fig -2: Cohesion and Coupling in modular programming

4. RESULTS AND DISCUSSIONS

The following points are realised in this report from the
extensive studies of the related work:

● The architecture built must be well researched
and stable for a couple of software generational changes

● Modules ought to be loosely coupled: each service
as an API must encapsulate its implementation. The
implementation can be changed without affecting the end
users directly.

● Services (or modules) must be strongly cohesive:
they should implement a small set of functions related
strongly to each other in meaningful ways.

● A module should be testable: unit testing and
integration testing at the very least of it.

● Services and modules must conform to the
Common Closure Principle: it states that things that
change together must be packaged together. This is done
to ensure that each change affects only one service and
does not have the rolling over or the ‘domino’ effect on
other modules.

● Each service is small enough to be developed by a
small team of 6-10 people making management easy.

● Each team that owns one or more services must
be autonomous. A team must be able to develop and
deploy their services with minimal collaboration with
other teams.

There are various concerns highlighted with the use of
legacy software which need to be addressed:

1. The legacy system suffers from legacy
architectural design issues on a software development
level and associated technical debt.

2. Existing APIs fetch more from the GET calls than
what is required, leading to the emergence of technologies
like GraphQL instead of traditional ones like REST.

3. There might be an issue of scalability of the
existing systems due to software scale limitations.

4. There might be system performance issues with
the overhead calls that are commonplace in older coding
styles.

5. The backend code is not optimised leading to
increased downtime.

5. CONCLUSIONS

This study was conducted to determine the current state
of software architectural techniques followed by the
software development industries. The practices in order

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1352

and newer techniques were outlined along with their
purview.

From a developer’s perspective there are mainly 2
advantages to improving a software’s architecture and
bringing it to modern standards:

1. Improved reliability, performance, robustness of
the software.

2. Less downtime, more feature set delivery in
lowered intervals.

This would also be a great advantage from the
organization’s perspective as:

1. Enhancement of the process of the monitoring of
performance, errors, isolation of issues.

2. Development of more features takes place in the
future more easily and the changes are put out more
promptly.

REFERENCES

[1] MacCormack, A., Rusnak, J., & Baldwin, C. “The

impact of component modularity on design evolution:

Evidence from the software industry”, Harvard Business

School Working Paper. (2007)

[2] J. Jelschen, G. Pandey, A. Winter. “Towards

Quality- Driven Software Migration”. In Proceedings of the

1st Collaborative Workshop on Evolution and

Maintenance of Long-Living Systems, Kiel, 2014.

[3] M. M. Lehman, "Programs, life cycles, and laws of

software evolution," in Proceedings of the IEEE, vol. 68, no.

9, pp. 1060-1076, Sept. 1980.

[4] Faitelson, David & Heinrich, Robert &

Tyszberowicz, Shmuel. (2018). “Functional Decomposition

for Software Architecture Evolution”.

[5] P. Di Francesco, "Architecting Microservices,"

2017 IEEE International Conference on Software

Architecture Workshops (ICSAW), Gothenburg, 2017, pp.

224-229.

[6] Lee, Ming-Chang. (2013). “Software measurement

and software metrics in software quality”. International

Journal of software engineering and its application.

[7] Carl K. Chang, Jane Cleland-Haung, Shiyan Hua,

and Annie Kuntzmann-Combelles. 2001. Function-Class

Decomposition: A Hybrid Software Engineering Method.

Computer 34, 12 (December 2001), 87–93.

[8] Cai, Yuanfang & Huynh, Sunny. (2020). Logic-

Based Software Project Decomposition.

[9] Pang C., Szafron D. (2014) “Single Source of Truth

(SSOT) for Service Oriented Architecture (SOA)”. ICSOC

2014. Lecture Notes in Computer Science, vol 8831.

Springer, Berlin, Heidelberg.

[10] Ghanam, Yaser & Carpendale, Sheelagh. (2008). A

Survey Paper on Software Architecture Visualization.

[11] Bosch, Jan. (2004). Software Architecture: The

Next Step. Software architecture. 3047. 194-199.

[12] C. G. Davis and C. R. Vick, "The Software

Development System," in IEEE Transactions on Software

Engineering, vol. SE-3, no. 1, pp. 69-84, Jan. 1977.

