
 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1465

Android Application on MVVM Architecture to Change Database
Nagaraj M1, Chethana G2

1,2Department of Electronics and Communication, RV College of Engineering, Bangalore.
--***---
 Abstract- The main objective of this app is to provide
premium account and app upgradation facility and to get
the details of the users of that app enable and monthly
reports using MVVM architecture. Personalised
performance reports for all the users of the batch and Chat
facility, anytime, anywhere. Disable chat when you’re busy,
easily create their Control what info your service provider
and admin can view for your batches online courses and
sell on their mobile app. some other facilities like data is
secured using AES 256bit encryption of courses providing
maximum security, manage your application completely
digitally. simplify the above work managing app is made
which upgrades the app to new version and activation of
premium account is done through this app.

Key Words: MVVM, KOIN, API

1. INTRODUCTION

 Android is a powerful operating system and it
supports a large number of applications in Smartphones.
These applications are more comfortable and advanced for
users. The hardware that supports android software is
based on the ARM architecture platform. The android is an
open-source operating system that means that it’s free and
anyone can use it. The android has got millions of apps
available that can help you manage your life one or another
way and it is available to low cost in the market for that
reason android is very popular.

API or Application Programming Interface is essentially
how our app communicates with the Android operating
system. API is what allows us to build our apps so they can
run on android devices. Now as with everything over time
new features are developed and old features refined and
sometimes products are completely revamped.

Maintaining the larger database is difficult so api’s are used
to change the database and update the new things and
allow other changes to the database that can done easily
using MVVM architecture and some dependency injection
so that UI can be changed frequently without changing the
base code

2. PROBLEM STATEMENT

develop the android Class App using MVVM Architecture
and KOIN dependency to avoid lagging and replace the
Dagger 2 with the same so that We can develop a user-
friendly App

 Tools App helps the non-technical employees to get
information about students, organization, and
tutorsOBJECTIVES

 The objective of this project is to create a user-
friendly app that provides useful information about users
such as student, tutor and organizations.

A literature survey was done on works on apps created
using mvvm architecture. Some of them are listed below.

In [1], The study results aim to bring more clarity in the
variety of MVVM design patterns and help practitioners to
make better grounded decisions when selecting patterns.

 In [2], This research provided some recommended
solutions to satisfy the relations between MVVM objects in
the project. Activity designed in [1], with MVVM design
pattern for Android development is introduced and MVVM
Framework, principle and advantage are also studied in
detail.

 In [3], Shifting from dagger2 to KOIN dependency
injection, pragmatic lightweight dependency injection
framework for Kotlin developers. Written in pure Kotlin
using functional resolution only: no proxy, no code
generation, no reflection.

 In [4], Android AlertDialog can be used to display the
dialog message with OK and Cancel buttons. It can be used
to interrupt and ask the user about his/her choice to
continue or discontinue.

 In [5], Google otp 2-Step Verification provides stronger
security for our Google Account by requiring a second
verification step when you sign in. In addition to our
password, we’ll also need a code generated by the Google
Authentication app on our phone. Platform and they can
provide ratings based on the quality.

3. MVVM ARCHITECTURE SETUP

 MVVM was designed to make use of data binding
functions in WPF (Windows Presentation Foundation) to
better facilitate the separation of view layer development
from the rest of the pattern, by removing virtually all GUI
code (”code-behind”) from the view layer. Instead of
requiring user experience (UX) developers to write GUI
code, they can use the framework markup language (e.g.,

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1466

XML) and create data bindings to the view model, which is
written and maintained by application developers. The
separation of roles allows interactive designers to focus on
UX needs rather than programming of business logic. The
layers of an application can thus be developed in multiple
work streams for higher productivity. Even when a single
developer works on the entire code base, a proper
separation of the view from the model is more productive,
as user interface typically changes frequently and late in
the development cycle based on end-user feedback. The
MVVM pattern attempts to gain both advantages of
separation of functional development provided by MVC,
while leveraging the advantages of data bindings and the
framework by binding data as close to the pure application
model as possible. It uses the binder, view model, and any
business layers’ data-checking features to validate
incoming data. The result is that the model and framework
drive as much of the operations as possible, eliminating or
minimizing application logic which directly manipulates
the view.

Fig. 3.1 Crop Database 1

Model : Model refers either to a domain model, which
represents real state content (an object oriented
approach), or to the data access layer, which represents
content (a data-centric approach).View, As in the model-
view-controller (MVC) and model-view-presenter (MVP)
patterns, the view is the structure, layout, and appearance
of what a user sees on the screen. It displays a
representation of the model and receives the user’s
interaction with the view (clicks, keyboard, gestures, etc.),
and it forwards the handling of these to the view model via
the data binding (properties, event callbacks, etc.) that is
defined to link

View Model : The view model is an abstraction of the view
exposing public properties and commands. Instead of the
controller of the MVC pattern, or the presenter of the MVP
pattern, MVVM has a binder, which automates
communication between the view and its bound properties
in the view model. The view model has been described as a
state of the data in the model. The main difference between
the view model and the Presenter in the MVP pattern, is
that the presenter has a reference to a view whereas the
view model does not. Instead, a view directly binds to
properties on the view model to send and receive updates.
To function efficiently, this requires a binding technology
or generating boilerplate code to do the binding the view
and view model.

Data : Declarative data and command-binding are implicit
in the MVVM pattern. In the Microsoft solution stack, the
binder is a markup language called XML. The binder frees
the developer from being obliged to write boiler-plate logic
to synchronize the view model and view. When
implemented outside of the Microsoft stack, the presence
of a declarative data binding technology is what makes this
pattern possible, and without a binder, one would typically
use MVP or MVC instead and have to write more
boilerplate (or generate it with some other tool).

4. API SETUP AND DATA FETCHING

 Web APIs are the defined interfaces through
which interactions happen between an enterprise and
applications that use its assets, which also is a Service
Level Agreement (SLA) to specify the functional provider
and expose the service path or URL for its API users. An
API approach is an architectural approach that revolves
around providing a program interface to a set of services
to different applications serving different types of
consumers. When used in the context of web development,
an API is typically defined as a set of specifications, such as
Hypertext Transfer Protocol (HTTP) request messages,
along with a definition of the structure of response
messages, usually in an Extensible Markup Language
(XML) or JavaScript Object Notation (JSON) format. An
example might be a shipping company.

Fig.4.1: Api architecture to fetch the data

API that can be added to an eCommerce-focused website to
facilitate ordering shipping services and automatically
include current shipping rates, without the site developer
having to enter the shipper’s rate table into a web
database. While ”web API” historically has been virtually
synonymous with web service, the recent trend (so-called
Web 2.0) has been moving away from Simple Object Access
Protocol (SOAP) based web services and service-oriented
architecture (SOA) towards more direct representational
state transfer (REST) style web resources and resource-
oriented architecture (ROA). Part of this trend is related to
the Semantic Web movement toward Resource Description
Framework (RDF), a concept to promote web-based
ontology engineering technologies. Web API’s allow the
combination of multiple API’s into new applications known as
mashups. In the social media space, web API’s have allowed web
communities to facilitate sharing content and data between
communities and applications. In this way, content that is created

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1467

in one place dynamically can be posted and updated to multiple
locations on the web. For example, Twitter’s REST API allows
developers to access core Twitter data and the Search API provides
methods for developers to interact with Twitter Search and trends
data

A. ui design

App bar In its most basic form, the action bar displays the
title for the activity on one side and an overflow menu on
the other. Even in this simple form, the app bar provides
useful information to the users, and helps to give Android
apps a consistent look and feel. As Shown in fig 4.2
Beginning with Android 3.0 (API level 11), all activities
that use the default theme have an ActionBar as an app bar.
However, app bar features have gradually been added to
the native ActionBar over various Android releases. As a
result, the native ActionBar behaves differently depending
on what version of the Android system a device may be
using. By contrast, the most recent features are added to
the support library’s version of Toolbar, and they are
available on any device that can use the support library.
For this reason, you should use the support library’s
Toolbar class to implement your activities’ app bars. Using
the support library’s toolbar helps ensure that your app
will In the admin form, once login credentials are entered,
there will be a page in which he can enter a new crop and
its parameter values or edit an already entered crop in the
database. This data from the webpage is to be stored in the
database. So, this will be processed through PHP and
JavaScript.

Fig. 4.2: Toolbar setup

have consistent behaviour across the widest range of
devices. For example, the Toolbar widget provides a
material design experience on devices running Android 2.1
(API level 7) or later, but the native action bar doesn’t
support material design unless the device is running
Android 5.0 (API level 21) or later. Once you set the
toolbar as an activity’s app bar, you have access to the
various utility methods provided by the v7 appcompat
support library’s ActionBar class. This approach lets you
do a number of useful things, like hide and show the app
bar. To use the ActionBar utility methods, call the activity’s
getSupportActionBar() method. This method returns a
reference to an appcompat ActionBar object. Once you
have that reference, you can call any of the ActionBar
methods to adjust the app bar. For example, to hide the
app bar, call ActionBar.hide().

Dialog box

A dialog is a small window that prompts the user to make a
decision or enter additional information. A dialog does not
fill the screen and is normally used for modal events that
require users to take an action before they can proceed.
The Dialog class is the base class for dialogs, but you
should avoid instantiating Dialog directly. Instead, use one
of the following sub classes: AlertDialog: A dialog that can
show a title, up to three buttons, a list of selectable items,
or a custom layout

Fig.4.3: dialog box for confirmation

DatePickerDialog or TimePickerDialog: A dialog with a pre-
defined UI that allows the user to select a date or time. Fig
4.3 define the style and structure for your dialog, but you
should use a Dialog Fragment as a container for your
dialog. The Dialog Fragment class provides all the controls
you need to create your dialog and manage its appearance,
instead of calling methods on the Dialog object. Using
Dialog Fragment to manage the dialog ensures that it
correctly handles lifecycle events such as when the user
presses the Back button or rotates the screen. The Dialog
Fragment class also allows you to reuse the dialog’s UI as
an embedded component in a larger UI, just like a
traditional Fragment (such as when you want the dialog UI
to appear differently on large and small screens).

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1468

5. RESULTS AND DISCUSSION

 The figure 5.1 shows the Home page having
options for a login. The user will have to enter the gmail to
access the app features, thus anybody who has an access to
the app can obtain the information of users they are
looking for. The Admin will have to login through Gmail
because he will be having access to the main database to
which he can add a new user or update an existing one.
Thus, security is provided to the database as well as made
user-friendly to the customers.

Fig. 7.1: Home page

The Figure 7.2 shows the Mobile number Entry after which
he will be directed to user information in viewpager shown
in figure 7.2 itself. User can get details of the person as
shown in figure temperature would be displayed.

Fig. 7.2: getting user details

Here, organization code is entered as Arecanut in figure 7.3
which will fetch all the parameters related to that
organisation. The page will appear as shown in figure 7.3

Fig. 7.3: org info output

To add new number old number and org details has to be
added and future updates will come to new number., as
shown in [8] will help the admin to manage number
changes.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1469

Fig. 7.5: change mobile number

6. CONCLUSION

 MVVM pattern is a guidance architecture pattern
for designing and developing complex applications to
achieve better reusability, maintainability and extensibility
with low degree of coupling. We should avoid using MVVM
pattern for simple applications.

KOIN dependency injection helps us to increase our
productivity with Kotlin. Rx-java helps us by handling the
cache without creating caching classes, combining the
reception of requests and results processing and getting
rid of standard AsyncTask, decreasing memory leak by
90%,optimizing the code to increase an application
response, making methods easier to combine premium
account and app upgradation provides additional features
which improves product efficiency. other details related
tabs provide easy access to user solutions.

One of the ways to optimize the design is by doing with
MVVM architecture by dividing the complete design into
separate parts. Multiple times UI can be changed without
disturbing the main code. Migration can be done from
mvvm to others when there are new updates available in
the market. New features can be added without changing
the present version of the application.

7. ACKNOWLEDGEMENT

 The authors thank Ms. Chethana G for providing
excellent guidance in carrying out the work. We also thank

Ms. Netravati, professor of RV College of Engineering for
providing their valuable feedback.

8. REFERENCES

[1] X. Li, D. Chang, H. Pen, X. Zhang, Y. Liu, and Y. Yao,
“Application of mvvm design pattern in mes,” in 2015
IEEE International Conference on Cyber Technology in
Automation, Control, and Intelligent Systems (CYBER),
2015, pp. 1374–1378.
 [2] A. Syromiatnikov and D. Weyns, “A journey through
the land of model-view-design patterns,” in 2014
IEEE/IFIP Conference on Software Architecture, 2014,
pp. 21– 30.
 [3] K. Jeˇzek, L. Holy´, and P. Brada, “Dependency
injection refined by extra-functional properties,” in 2012
IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2012, pp. 255–256.
 [4] T. Limpiti, S. Khamyan, S. Chumsaeng, and N.
Puttarak, “A smart dialogue box for the hearing
impaired,” in 2019 5th International Conference on
Engineering, Applied Sciences and Technology (ICEAST),
2019, pp. 1–4.
 [5] M. H. Eldefrawy, K. Alghathbar, and M. K. Khan, “Otp-
based two-factor authentication using mobile phones,” in
2011 Eighth International Conference on Information
Technology: New Generations, 2011, pp. 327–331.
[6] B. S. Pochampally and J. Liu, “A secure tracking mobile
app development,” in 2017 12th IEEE Conference on
Industrial Electronics and Applications (ICIEA), IEEE, Jun.
2017. doi: 10.1109/iciea.2017.8282926
 [7] Prathibha S R, Anupama Hongal, Jyothi M P “IOT
Based Monitoring System in Smart Agriculture” 2017
International Conference on Recent Advances in
Electronics and Communication Technology (ICRAECT).
16-17 March 2017, 81-84. 10.1109/ICRAECT.2017.52..
 [8] M. F. A. Samsudin, R. Mohamad, S. I. Suliman, N. M. Anas and
H. Mohamad, "Implementation of wireless temperature and
humidity monitoring on an embedded device," 2018 IEEE
Symposium on Computer Applications & Industrial Electronics
(ISCAIE), Penang, 2018, pp. 90-95, doi:
10.1109/ISCAIE.2018.8405450.

BIOGRAPHY

Nagaraj M,
BE final year,
Dept. of Electronics and
Communication,
RV College of Engineering.

 Ms. Chethana G

Assistant Professor,
Dept. of Electronics and
Communication,
RV College of Engineering.

