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Abstract - A DataFrame is a data structure which supports 
a variety of operations like map, reduce, filter, join, Etc on 
tabular data. It is a primitive non-relational and in-memory 
database system with a focus on speed and efficiency rather 
than features. They are used extensively in data science and 
machine learning pipelines. Graphical Processing Units(GPU's) 
are computation devices which are highly parallel in nature 
built for graphics applications. However, they are commonly 
used as accelerators in compute intensive and parallelizable 
applications. In this paper we explore the possibility of 
accelerating a number DataFrame operations on the GPU 
written in a high-level language (Julia). In particular we 
implement the three-fundamental big-data operations which 
are map, reduce and filter. 
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1.INTRODUCTION 
 
While an interactive environment is great for understanding 
data, associated challenges and writing code, with large 
datasets we require speed and interactivity is no longer a 
requirement once the solution code has been written. Often 
this has meant that the user must rewrite their program in a 
lower level language like C++ which is performant. This is 
known as the two-language problem wherein prototyping is 
done in a High-level language like Python or MATLAB and 
later the code is rewritten in a lower level language like C++ 
for performance reasons. With a large number of scientists 
and engineers having a non-CS background this is a very 
challenging problem for them. 
 
Julia is a high-level language which aims to solve this "two-
language" problem [1]. The idea is that despite having the 
syntax of a high-level language which is quite similar to that 
of Python its performance is quite similar to that of C or C++ 
often off by a factor of up to two which is great to save 
developer time. It has a number of high-level language 
features like pythonic syntax, interactive REPL environment, 
metaprogramming, Etc It also has a fantastic GPU stack 
which allows us to write both high-level 
and low-level code to be executed on our GPU's. Tim 
Besard's paper on this explains the GPU stack of Julia very 
well [2]. 
 
GPU's are devices connected to a computer through the PCIe 
lane. They possess a large number(1000's) of less "smart" 
cores which are capable of processing independent of each 
other in parallel. However, being less smart they are 
extremely slow for serial tasks but blazingly fast for parallel 

tasks. GPU's are often described using the SIMT(Single 
instruction multiple thread) model which is analogous to the 
SIMD(Single instruction multiple data) model. The idea is 
that all of these "less smart" cores are performing the same 
instruction albeit on different data. There can be a level of 
thread divergence where two threads may be performing 
different operations concurrently but that generally has a 
significant performance penalty. GPU's are much more 
complicated than the simple description we have given 
above as that is beyond the scope of this paper. There are a 
number of performance considerations we must have while 
designing GPU applications. Factors like memory transfers 
(RAM <--> GPU), synchronization barriers and thread 
divergence can slow down GPU applications considerably 
making its performance orders of magnitude worse than the 
CPU. Fortunately, a number of operations concerned with 
DataFrames are "embarrassingly parallel" making GPU's an 
ideal porting target for DataFrame applications. 
 
CUDA which stands for (Compute unified device 
architecture) refers to NVIDIA's GPU platform for their own 
GPU's. It is an extremely refined software stack upon which a 
number of bleeding machine learning and data stacks are 
built. It is due to this refinement and production quality 
software stack we have chosen CUDA. When we wish to use 
Julia with NVIDIA a number of packages like CUDAnative.jl, 
CUDAdrv.jl and CuArrays.jl allows us to write almost native 
Julia code which compiles for the NVIDIA GPU. Currently, 
work on the AMD stack is ongoing on the Julia GPU stack 
hence the hope is that eventually we can write the same code 
for both NVIDIA and AMD cards as Julia's Internal compiler 
infrastructure can take care of translations. 

 

2. Operations 
 
2.1. Map 
Map is a fundamental operation which applies a higher-level 
function to a list(s). 
 

julia> map(x -> x * 2, [1, 2, 3]) 
  3-element Array{Int64,1}: 
   2 
   4 
   6 
julia> map(+, [1, 2, 3], [10, 20, 30]) 
  3-element Array{Int64,1}: 
   11 
   22 
   33 

Listing-1: Map examples 
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Since each element can be computed independent of the 
other elements it's quite straight forward to implement a 
GPU version. One advantage of using Julia compared to 
Python is that we can directly write native Julia code for 
out mapping function and the compiler will generate an 
efficient version provided that the function's code is type 
stable and uses only static fundamental data types (int32, 
int64, bool, float32, float64,.etc) as GPU's cannot support 
complicated datatypes like Strings and BigInt's out of the 
box. 
 
Another benefit of using Julia is that it will automatically 
replace functions with the best implementation available. 
Using a complicated expression like 
 
x -> x^2 + sin(y) + 1.9sqrt(|cos(z)|)                                       (1) 
 
Where x, y and z are different columns of the DataFrame. The 
compiler will automatically replace the call to sin(x) with 
NVIDIA's sin(x) however if a function isn't implemented by 
NVIDIA, Julia can use its internal definition to generate code 
that will work. There is absolutely no guarantee that this 
code will be optimal. It is most likely that it will be non-
performant as internal definitions were written for the CPU 
which generally has a lot of branches which is really bad for 
the GPU performance wise. It is the user's responsibility to 
profile the code and/or check the output assembly to check 
for badly generated code for functions that aren't 
fundamental or defined by them in a way which is good for 
the GPU. 
 
Given p parallel processors and n elements, map can be 
computed in O(n/p) 
 

 
Figure-1: GPU speedup over CPU for map operation 

 
The above benchmark shows us the speedup of the CUDA 
GPU version relative to the CPU version on the simple 
function f(x) = x2. For small array sizes the CPU is significantly 
faster with the GPU overtaking it at around 217 ~105 elements 
with the GPU getting a 20x speedup for 228 2.6*108 elements. 
We must also note that Julia has auto-vectorized the CPU 
version. As the input function f(x) gets more complicated the 
GPU speedup is expected to be higher. Also our map is only 

using a single input vector, adding more input vectors like in 
equation(1) will perform better on the GPU. 

2.2. Reduce 

Reduce applies a binary operator to each element of a given 
list.  
 

julia> reduce(*, [2; 3; 4]) 
  24 
julia> reduce(xor, [7; 8; 9]) 
6 
#0111 xor 1000 xor 1001 = 0110 

Listing-2: Reduce examples 
 

 
Figure-2: GPU speedup over CPU for reduce operation 

 
Unlike the map example both the final speedup for large 
arrays is less along with the point where the GPU overtakes 
the CPU 220 here vs 217 earlier. This is understandable as 
unlike the last example there is a level of dependency among 
all elements and the GPU kernel has points of synchronization 
which hits the throughput of this operation. 
 
Given ̀ p` processors and array length of ̀ n` the complexity of 
parallel reduce is O(n/p + log(N)). 
 
It should also be noted that IEEE Floats are not associative 
which means that for two floating points `x` and `y` there is 
no guarantee that x + y = y + x. Hence for a lot of reduction 
operations expecting the answer to be exactly same cannot be 
guaranteed due to the way floating point math works which 
has a lot of repercussions on GPU code since the result 
depends upon the exact order of events which cannot be 
guaranteed in a parallel environment. A lot of nuance of 
floating-point math can be found in Goldberg's paper [3]. 
 
As a final example lets return to equation (1) where we do 
the map and the reduction too which is exposed via the 
mapreduce function which combines both the calls. 
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Figure-3: GPU speedup over CPU for map-reduce 

operation 
 
The benchmark provides sufficient empirical evidence of 
how GPU is truly dominant over the CPU, even giving around 
an 80x speedup as the array length grows. 
 

2.1.3. Filter 
 
Filter is a method which only selects those elements from a 
container which satisfy a predicate equation. 
 
There are two types of filter operations: stable and unstable. 
Stable filter method means to maintain the original ordering 
of the elements and unstable filter means that the ordering 
may be changed in the output container. On a GPU unstable 
filter is much faster due to no need for synchronizations. 
Stable filtering requires a level of synchronization hence, we 
tried to benchmark this worst case against the CPU. We 
made our test predicate even worse by testing for odd 
integers which causes massive warp-divergence resulting in 
50% efficiency. 
 

 
Figure-3: GPU speedup over CPU for filter operation 

 

3. CONCLUSIONS 
 
 We have gone through the three fundamental operations of 
big-data analytics which are map, reduce and filter. The 

experiments show very convincingly the acceleration 
achieved with the help of a general-purpose GPU. 
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