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Abstract - Neural Architecture Search (NAS) is a technique 
used to partially automate the designing of deep learning 
architectures. In recent years, NAS has delivered architecture 
designs that have greater accuracy than any human-designed 
models. NAS also gives promising results when used to reduce 
the latency of inference run and the size of the deep learning 
model without affecting the accuracy significantly. This survey 
discusses and analyses the different approaches used for the 
NAS, existing problems, and proposed solutions. Additionally, 
this paper discusses some predictions on the future of NAS 
methods and the use cases in the future. This paper also 
throws light upon improvements that will be added by the use 
of quantum computers. 
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1. INTRODUCTION  
 
Deep learning methods extract features from unstructured 
data such as text, image and audio. Which makes them highly 
successful in tasks such as machine translation, image and 
speech recognition. This success has created huge demand 
for architecture engineering, which has resulted in creation 
of more complex architectures designed manually. However 
deep learning techniques are computationally intensive and 
model designing requires high level domain knowledge. 
Deep learning models designed by NAS have outperformed 
models designed by humans, object detection [10], image 
classification [10,11] and semantic segmentation [12]. NAS is 
a subfield of AutoML whose goal is to completely automate 
the machine learning starting from data collection to 
predicting outputs.  
 
There has been an increased effort in research towards NAS 
within last two years. This resulted because of the 
realization that it is possible to achieve significant gain in the 
performance of deep learning methods by making slight 
modifications to the present architecture. This realization 
meant that the reduced performance by a model is because 
of the slightly different model architecture. These variables 
which needs to be modified can be activation function of a 
layer, kernel size of convolution network, optimal skip 
connections in the network, dropout rate, number hidden 
units of a LSTM etc.  As it can be observed that these 
modifications are minor but finding the exact place of 
modification and the amount of modification is a laborious 

and error prone task. Hence NAS is used to automate this 
process, on basic level it can be said that NAS is a search 
algorithm over the set of variables that define the 
architecture of a neural network. Meaning that NAS is 
employed to find out the best architecture from the pool of 
architectures which have different combinations of the 
variables as defined above. From this search space NAS will 
pick out architecture which has the best performance.  By 
this definition we can define NAS as a system of three parts: 
search space, search strategy and performance estimation 
strategy [1]. 
 
• Search space: Search space defines all the 
architectures that can be represented in principle. 
• Search strategy: The search strategy details how to 
explore the search space. 
• Performance estimation strategy: Refers to the 
estimation of the performance of deep learning model. 
Simplest one is the sample training and validation of the 
architecture on the given dataset. 
This review is divided into several sections, Section 2 
discusses about the different search spaces that have been 
proposed, Section 3 looks at the search strategies proposed 
till now, Section 4 looks at the performance calculation 
strategies with a look at the multi object search, Section 5 
discusses about the use cases where NAS will be used in the 
future, Section 6 discusses about the improvements that can 
be added by the quantum computing to NAS and Section 7 
concludes the discussion with the outlook on future 
directions. 
 

2. ARCHITECTURE SEARCH SPACE 
 
Neural Architecture Search Space can be defined as the set of 
all architectures which can be a feasible solution of the given 
NAS method. Looking at the Search Space for Convolutional 
Neural Networks (CNNs) it can be divided into two 
categories global search space and cell-based search space. 
Whereas for Recurrent Neural Networks (RNNs) a different 
kind of search space needs to be used. This section discusses 
about all these search spaces.  
 
Cell based search space means that architecture is composed 
of the repetition of the fixed structures called cells. Zoph et al 
in [10] was the first to use this kind of search space his 
search space is popularly known as NASnet search space. 
NASnet search space consists of two kinds of normal cell and 
reduction cell, former doesn’t reduce the reduce the spatial 
maps and latter is designed to reduce the spatial map. This 
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design dominates the cell-based search space. Zongh et al in 
[13] uses pooling layer instead of reduction cell to reduce 
the spatial dimension. Both of these search space did not 
have skip connections between cells but there were skip 
connections inside the cell. While the architecture remains 
the same across the cells of the architecture 
hyperparameters inside the cell can be changed for each cell.   
Global search space gives freedom to select operations of the 
complete architecture. Baker et al [14] explored this search 
space which had chain structure search space which did not 
have skip connections. Zoph and Lee in [15] defined a 
version of this space with arbitrary skip connections.  
 
Cell based search spaces are more popular in the NAS 
community because of their success and transferability of 
the cells across different datasets. But Tan et al [16] states 
that diversity of layer is necessary to achieve both high 
accuracy and low latency. Hence, we can conclude that 
selection of search space is dependent on the researcher and 
their requirement. 
 
As for search space of RNN is concerned no researcher has 
explored this part except Zoph and Lee in [15]. They are the 
only researchers who have defined a search space for the 
RNN. They defined a search space where each recurrent cell 
is composed of hidden state, cell state and input for that step. 
The definition of search space plays a major role in the 
success of the NAS method. While increase in the 
hyperparameters and architectural parameters for selection 
broadens the architectures available for the selection it also 
comes at a cost of increased exploration time. This increased 
exploration time can cause the delay in results and may need 
extra resource for proper execution. Hence it is advised that 
the researcher choose a search space which has less 
hyperparameters available for tuning. 
 

3. ARCHITECTURE SEARCH STRATEGY 
 
As mentioned in section 1 NAS is a search algorithm on the 
Architecture Search Space. Making the search strategy 
principal part of NAS responsible for achieving success. But 
this search strategy is an example of black box optimization 
problem. Many different search strategies are proposed to 
explore the neural architecture search space including 
random search, Bayesian optimization, Evolutionary 
methods, Reinforcement Learning, Surrogate Model based 
search, One shot architecture search, Monte Carlo Tree 
search and gradient based methods. 
 
Bayesian Optimization was the earliest successful search 
strategies in NAS, Domhan et al [17] created state of the art 
performance on cifar-10 without data augmentation. 
Mendoza et al [18] formed the world’s first automatically 
tuned neural network which won competition data sets 
against human experts. But after this BO has not been used 
much by the researchers because typical BO toolboxes are 

based on Gaussian processes and focus on lowdimensional 
continuous optimization problems.  
 
Evolutionary methods were first proposed by Real et al in 
[19] based on tournament selection for both survivor and 
parent selection. Shortly after this Xiu and Yullie in [20] 
proposed the use of genetic algorithm over a more 
structured search space. Real et al in [21] created 
AmoebaNet-b and AmoebaNet-c with evolutionary 
algorithms on NASnet search space it created new record on 
classification for both CIFAr-10 and ImageNet dataset. These 
evolutionary algorithms used for NAS are sometimes also 
referred as neuro evolutionary algorithms.  
 
Reinforcement learning is the most popular search 
technique among researchers for NAS. As we see in 
[10,14,17,23] RL has been very successful in identifying 
architectures which perform very well compared to the 
human designed architectures. Tan et al in [16] 
demonstrated that RL was successful in multi objective 
search also.  
 
Elsken et al in [24] proposed a hill climbing algorithm which 
moves greedily in the direction of architectures performing 
better than previous without requiring any other exploration 
techniques. 
 
Liu et al in [25] propose a direct gradient-based 
optimization. Here authors create the operation to be 
selected as a convex combination of all operators which can 
fit in that space. Now this equation for selection of operation 
is differentiable and this loop is continued till a discrete 
operation is obtained. 
 
Comparing the different search techniques based on the 
performance of architecture detected by the search methods 
is not a good idea because all these search methods are 
applied on different search space an architecture which has 
very good performance detected by RL method might not 
even be present in the search space of evolutionary methods. 
Recently NAS bench 101[26] and NAS bench 201[27] tried to 
solve this problem by using a database of trained 
architecture and applying search method on that database as 
a search space.  Results obtained by their research conclude 
that there isn’t much difference between RL and 
evolutionary search algorithms. Real et al in [21] also 
compared RL, Evolutionary search and Random search. 
Concluding that RL and evolutionary search perform equally 
well in terms of test accuracy but evolutionary search finds 
smaller models and models with lesser inference latency. 
Whereas both methods outperform Random Search at all 
stages. 
 
4. PERFORMANCE CALCULATION  
 
Performance calculation of the architectures is the bottle 
neck for the speed up of NAS methods. Classical performance 
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calculation of architecture is to train the dataset on the 
architecture and obtain validation accuracy. But the training 
of single architecture on given dataset takes a lot of time 
based on the size of dataset and number of epochs used for 
training. This is the reason why we see NAS applied on 
smaller datasets like CIFAR-10 and penn tree bank [10]. 
With the increase in the size of datasets the resources and 
time required also increases. There are many methods used 
to reduce this bottle neck to achieve speed. 
 
Estimating the performance of architecture based on the 
lesser number of epochs, subset of the dataset, downscaled 
models and downscaled data. It is assumed that any 
architecture performing well on the above condition will 
perform well on the complete dataset. This approach is used 
in [10,21,28,29,30 and 31] 
 
Previous approach just assumed that performance will 
extrapolate as expected for bigger datasets and models but 
some researchers estimated the performance based on 
extrapolation methods on initial data on performance. This 
approach is used in [32,33,34 and 35]. 
 
One more approach is to use models which inherit weights 
from a parent model. That is instead of training model from 
the scratch it is warm started with weights inherited from a 
parent model. This approach was followed in [19,22,24,36 
and 37] 
 
One shot model or weight sharing approach is also used in 
some cases. One shot model approach first trains a parent 
model which is a combination of all neural architectures 
present in the search space, meaning that NAS searches for 
the model which are only sub graphs of the parent model. 
Now since the whole model is trained, weights of sub graph 
are taken from the parent graph. In this only one model 
needs to be trained which reduces the performance 
calculation time by a large margin. This approach is used in 
[25,38,39,40 and 41] 
 
All of the above approaches have their own limitations, many 
researchers argue that these methods are not a correct way 
to measure the performance of a model. That is also true 
because all these methods are an estimation of final 
performance. Some models might be lagging in the initial 
calculations and might perform well in later stages. And 
while training the models common hyperparameters are 
used for all models, meaning that hyperparameters are not 
optimized for the given model, which in turn affects the 
performance of the model. But these methods have achieved 
good results with less resources utilized. Hence researchers 
are using the above methods to overcome the requirement of 
large amount of GPU hours needed for NAS when models are 
trained from scratch for performance calculation. 

 
 
 

5. APPLICATION OF NAS 
 
It is established that NAS outperforms the human designed 
models in performance, size and inference latency. But its 
limitations of large resource requirement to arrive at the 
given results hasn’t made them a preferred choice when the 
size of dataset is very large. And there is a research gap for 
NAS used for applications other than image classification. 
Some researchers have taken up initiative to fill up this gap. 
Notable among them are Image Restoration [43], Semantic 
segmentation [12], Transfer learning [42], Machine 
Translation [31] and RNN [15,44] for language and music 
modelling. 
 
One more direction in which NAS has produced promising 
results is multi objective performance. In this performance 
of the model will be a combination of accuracy and number 
of model parameters, number of floating-point operations, 
device specific latency. In this regard some model 
compression techniques inspired by NAS are proposed to 
reduce the size of the model without altering the accuracy of 
the model. Elsken et al in [24] proposed an evolutionary 
algorithm where the objective functions are divided into 
cheap to evaluate objective functions (number of parameters 
and inference time) and expensive to evaluate objective 
functions (validation accuracy). Tan et al in [16] combined 
the accuracy and inference time into a single equation for 
objective function. Where accuracy is directly proportional 
and inference time is inversely proportional to the objective 
function. Model compression techniques inspired by NAS are 
proposed in the following works of [45,46 and 47] 
 
NAS has a great potential to provide good results when 
applied for device specific architecture design. Which is 
already proved in [16,40]. Now a days we can see a vast 
variety of hardware designs. And we can expect a significant 
reduction in latency if neural network is designed for the 
specific hardware devices. Which is a humanely impossible 
task making NAS an inevitable choice for this task. While 
applying NAS for one device the architecture design and 
weights can be saved as done in [26,27] which can be reused 
when applying NAS to other devices. Resource requirements 
would be justified when the function is optimizing the 
network for more than a certain number of devices. 
 

6. IMPROVEMENTS WITH QUANTUM COMPUTING 
 
Quantum computing even though has promised the 
exponential speedup of execution of certain algorithms. 
From the day Shor proposed his algorithm for prime 
factorization researchers have been coming up with new 
propositions and algorithms using quantum computers. 
Recent findings have shown that even fields of Machine 
learning and AI can achieve exponential speed up with the 
help of quantum computing. Quantum computation 
researchers hope to find more quantum algorithms 
demonstrating significant speedup over classical algorithms. 
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The design of QNNs [3] is one such problem where classical 
computers can help quantum research. On the other hand, 
the AI community believes that quantum computation shows 
significant potential for solutions to currently intractable 
problems [9]. 
 
Quantum Reinforcement learning [8] and Quantum 
Evolutionary Algorithms [7] proposed have promised an 
exponential speedup in terms of mathematical 
computations. Quantum Reinforcement learning has proved 
to produce a good tradeoff between exploration and 
exploitation with the help of quantum superposition for 
representing the states i.e. in the case NAS representing 
architecture search space. Meaning that with the proper 
arrangement of qubits one can fit all the architectures in the 
search space as a single qubit array. Of course, these qubits 
will be combination of the architectures. By this search 
action will be reduced to finding the combination of qubit 
which has higher performance.  
 
Apart from these some research has been focused on 
application of quantum computing specifically for NAS. Silva 
et al in [5] proposed a quantum algorithm which can predict 
the performance of the classical neural network 
architectures. This algorithm can speed up the NAS 
algorithm by reducing the time required for performance 
calculation as neural network’s performance can be 
predicted without training. Szwarcman et al in [6] proposed 
a quantum inspired neural architecture search based on the 
quantum inspired evolutionary algorithms. This algorithm is 
designed to be executed in classical computers by using the 
techniques applied in quantum computation. Santos et al in 
[4] proposed a quantum algorithm which can possibly train 
the neural network in superposition. i.e. training many 
neural network architectures in a single run. He also 
proposed the method for evaluating and selection of neural 
network architectures. But as all quantum computing 
algorithms these algorithms also need to be verified in the 
quantum computers which might take many years for 
practical implementation. 
 

7. CONCLUSION 
 
With the above findings the question raises can computers 
design neural network architectures better than humans? 
Can NAS replace the neural network architecture designers? 
In the current scenario the answer will be no. But what 
happens in the future? What happens when Quantum 
Computers are practically implemented? Will the answer 
still remain NO? 
 
The answer is a bit complicated for the question. As the title 
says NAS is a search algorithm meaning that it finds the best 
architecture in the given search space. NAS cannot create a 
new architecture design. It sure does find the best 
architecture in the given search space faster than humans. 
But it cannot go beyond the search space provided. The only 

advantage of NAS would be faster search results than human 
counterparts. It is true that computers can do the repetitive 
tasks faster than humans. But if NAS can provide better 
results than human designed architectures then it is efficient 
for project developers to use NAS. Given the fact that NAS 
also has the capability to find architectures which have 
higher accuracy and still have smaller size and lesser 
inference timing. NAS can also tune the architecture for 
efficiency in the given architecture. Due to all these reasons 
it is no doubt that NAS will have upper hand compared to 
neural network designers.  
 
Neural network designers in the future should focus on 
designing the architecture search space rather than single 
architecture design. The research needs to be more focused 
on creating novel architecture designs like CNN, RNNs etc. 
Research gap in the field of representing RNNs and other 
deep learning models in the architecture search space. Even 
research in the field of search strategy needs to be explored. 
The advancements in the performance calculation strategy 
for estimating the performance of architectures needs to be 
tested and validated.   
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