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Abstract - This paper presents several improvements to 
Google's AlphaZero chess engine. A wide range of chess 
engines have been created, either by using handcrafted 
features or machine learning algorithms, with the purpose of 
pushing the boundaries of what a computer can do and to 
understand the game itself. Under this project, several studies 
have been performed to further improve AlphaZero's 
performance, both by analyzing existing engines and several 
reinforcement learning technologies. Ultimately, a chess 
engine, MantisShrimp was designed that is able to learn the 
game features much faster than AlphaZero. This was majorly 
achieved through modifying the deep learning network used 
by AlphaZero and changing the learning methodology. The 
loss function and action representation were also modified to 
force the network into learning domain specific features. 
Instead of just self-play, the network underwent supervised 
training for a short period to speed up the learning process, 
fine tune the hyper-parameters and prevent initial learning 
bias.  
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1. INTRODUCTION 
 
 A co-relation has always been made between chess and 
intelligence. It was, at a time, considered impossible that a 
computer would ever be able to play chess. Chess is an 
extremely complex game which requires unparalleled 
reasoning and creativity and as such, it is an extremely 
difficult task to program a computer to play chess at a 
reasonably good level. 

 In 1997, IBM's deep blue defeated the then reigning 
champion and FIDE Grandmaster Gary Kasparov setting a 
milestone for computer intelligence. In the coming years, 
both the hardware and software advanced computers so far 
that no human can you hope to match against any standard 
chess program. A human searching 5-6 positions in future 
will obviously overpowered by the brute force of a machine 
that can analyze hundreds of positions per second. While the 
early chess programs like Deep Blue leveraged their 
hardware and relied on their brute computational power, 
modern chess programs have focused on the software to 
improve their performance. The open source chess engine 
Stockfish can now easily defeat the top player in the world 
running on a low-end smartphone.  

 Any chess program has 2 major components: move search 
and move evaluation. The programs from last decade like 
Stockfish and Komodo uses a tree-based searching from a 

position to create a game tree till a specified depth, and then 
evaluates these positions using an algorithm to decide the 
next best move. The evaluation algorithm consists of 
handcrafted features and positions determined after long 
research and statistical analysis. These programs play the 
game in a piece-centric manner, as opposed to position 
focused approach taken by human players. 

 Researchers have tried to replace this evaluation function 
with machine learning technologies, but it wasn't until 
Google's AlphaZero in 2017 that machine learning made a 
serious dent in the field. AlphaZero's move searching 
algorithm is similar or comparable to the search algorithms 
of traditional engines, but the evaluation function is actually a 
Convolutional Neural Network, similar to the ones used for 
state of art image recognition technologies. This project aims 
at improving AlphaZero's performance at playing chess 
through changing the deep learning architecture and 
modifying the learning methodology. Instead of depending on 
self-play, initial learning is done through having it play 
against Stockfish, and it is only allowed to play against itself, 
after it has learned a certain level. Some new advancements 
in deep learning were utilized to further speed up the 
learning process. 

2. BACKGROUND AND RELATED WORK 
 
2.1 Stockfish 
 
 Minimax is a recursive algorithm for traversing the game 
move tree used by Stockfish. It is similar to DPS algorithm 
that traverses the tree assuming that opponent always picks 
the most optimal move. A game of chess, however, has an 
average branching factor of 35 and an average game has 
around 40 moves. So during a game, the Minimax is usually 
done to some fixed depth which is decided based on the game 
type. When the maximum depth is reached, the evaluation 
function is used to assign a score to those leaf positions 
instead of going to higher depths. Quiescent search is also 
used to avoid horizon effect. There can be some positions that 
looks bad at current max depth but would have been bad if 
maximum depth were increased. Horizon effect can occur 
even if we keep increasing maximum depth. Such 
troublesome positions need to be eliminated by going deeper 
in every search process until the leaf nodes are all relatively 
quiet positions. Quiet positions in chess are chess are ones 
that are not a capture, check or immediate threat to the 
opposition. These positions do not possess any horizon effect. 
Stockfish uses 2 separate functions, one for endgame 
evaluation and one for middlegame evaluation. During the 
start, middle-game score has higher weightage. As the game 
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progresses, scale factor for endgame score increases and 
phase decreases making endgame score more prominent. 

2.2 AlphaZero Chess 
 

Monte Carlo tree search or MCTS is the search algorithm 
used by Alpha Zero instead of Minimax. Minimax has a major 
disadvantage in that it tends to scan all or atleast more than 
half branches even with $\alpha-\beta$ pruning. This is 
highly impractical for a game like chess. MCTS overcomes 
this by not going to the full depth of every branch and works 
in a probabilistic fashion. AlphaZero uses PUCT instead of 
UCB1 for traversing the search tree [1]. The evaluation 
function is replaced by a CNN here, with ResNet modules to 
prevent diminishing gradient problem. 

 

3. MantisShrimp 
 
3.1 Architecture 
 
 The input state is similar to that of AlphaZero. 
MantisShrimp uses 5 step history instead of AlphaZero's 8 
step history. Some redundant planes have been combined in 
the input such that the input highlights long plies of slow 
progress. A major difference is in action representation. 
While AlphaZero automatically masks illegal moves predicted 
by the neural neural network in each stage of tree search, 
MantisShrimp is forced to only make legal moves. This is 
done by modifying loss function such that the network is 
heavily penalized for illegal moves. The loss function uses 
relative entropy (Kullback–Leibler divergence [10]) rather 
than cross entropy to further emphasize the illegal move 
error. 

Table -1: MantisShrimp Input representation 
 

Feature Planes 
P1 Piece 6 
P1 Piece 6 
Repetitions 2 
 x5 
Color 1 

P1 castling 2 

P2 castling 2 

Half-move Count 3 

Total 78 

 

 

z = Output from value head. 

v = 1 if move resulted in a win, -1 if loss and 0 if draw. 

 = Expected probability distribution. 

p = Probability distribution by Neural Network after 
scaling of illegal move probabilities. 

q = Vector for illegal move penalization. If the 
corresponding move is legal, q(i) is 1 and if move is illegal, 
q(i) is 10. 

 = Regularization Coefficient. 

  = Network Weights. 

By penalizing the network for illegal moves, we expect it 
to learn the game's features better, and it would also prevent 
internal layers from focusing on details that will not lead to a 
legal move. 

The ResNet blocks in the original network have been 
modified with squeeze-and-excitation's global pooling paths. 
This is expected to significantly reduce channel co-
dependencies [4]. Fig. 1 shows a Squeeze-and-Excitation 
block. While normal CNN blocks give equal weightage to all 
channels, the Squeeze-and-Excitation path learns and acts as 
a weight for different channels.  

 

Fig. 1: Converting a ResNet module to squeeze-and-
excitation ResNet module 

 
Squeeze-and-Excitation blocks show prominent effects in 
deeper layers where the Convolutional channels have more 
pronounced features. AlphaZero's use of modified PUCT 
brings about another problem. Functions like PUCT and UCB1 
are designed to balance exploitation and exploration. The 
original function has been modified to also account for 
probability given by neural network P(S). 

  

Si = ith state 

Vi = Average score of ith state 

Cpuct = Exploitation parameter. A constant used to balance 
exploitation and exploration 

N = No of visits of parent ith state 

ni = Visit count for state 
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 P(Si) = The probability of node from the CNN network.  

 If any move has been visited fewer times compared to 
other moves, the algorithm would want to explore that move 
more. Exploration refers to visiting less visited nodes and 
Exploitation refers to visiting nodes with higher chance of 
win. The constant Cpuct is used to balance the two. But if the 
prior probability of that move is extremely low according to 
the neural network, it might not be visited even with very low 
visit count. This will cause an unintended horizon effect. To 
avoid this, the child moves from root with very low visit 
count have their PUCT score set to infinite so they are visited 
even if network assigns them really low probabilities. The 
game of chess can have average branching factor of 35-38. 
Since every Monte Carlo Tree Search (MCTS) does have 
maximum iterations set to 800, it was decided to modify 
PUCT such that all moves that have been visited less than 
0.5%, i.e. less than 4 times will be visited first. 

 So that MCTS does not always select same move, a 
randomness is introduced through temperature τ. 
Temperature allows MCTS to select moves randomly from a 
range of moves that are close to best, rather than selecting 
best moves every time. A temperature of 10 means the moves 
selected will have probability ±1%. While AlphaZero kept 
temperature constant, MantisShrimp varies it for some games 
to have more variation in training set. 

3.2 Training Configuration 
 
 The network weights are initialized as random. Instead of 
using self-play from start, the network is first trained on 500 
games played by top players to speed up learning initially. 
The network then does 10 steps of training by playing against 
Stockfish in batches of 500 games. This kind of supervised 
learning prevents the network from acquiring bias in the 
beginning. Other option to avoid such bias is to have game 
start from some popular opening positions as done by 
AlphaZero. MantisShrimp uses both. 

At this point, the program is made to play against itself, 
800 games a batch. The MCTS maximum iterations is limited 
to 800 as well. A replay buffer/queue of latest 80000 games is 
maintained for the network to learn from. The network 
samples 2048 games from the replay buffer for a step of 
training. The new network is then made to play against the 
old network in a 1000 game match. The losing network is 
discarded and the process is started again with new network. 

 

 

Fig. 2: Learning Process 
 
It was observed through experiments that Stockfish 

performs better than LeelaZero (the best performing open 
source AlphaZero clone) during endgames, when they are 
made to continue a game position by human players. A major 
reason for that can be lower variation in endgames for the 
games the network is trained on. To solve this, temperature τ 
is kept low during opening and is gradually increased as 
game reaches the endgame phase for 40% of the self-play 
games.  

3.3 Performance Evaluation and Results 
 
 ELO is a rating system used in chess that assigns a relative 
score to players. MantisShrimp is written in python so it 
cannot be accurately compared against any mainstream chess 
programs. Therefore, an AlphaZero clone was created to 

 

Fig. 3: Relative ELO for AlphaZero and MantisShrimp. 
MantisShrimp's ELO before self-learning is 1003, so its 

plot has been shifted for better comparison 
 
compare learning speed for the two programs. If ELO is 
known for one program, ELO for another program can be 
determined by making the two programs play against each 
other. Stockfish 11 was used for this comparison. It's ELO was 
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set at 4000 and the programs were made to play against it 
per 5 steps of training. Fig. 3 compares relative ELO of the 
two engines. AlphaZero was trained as in the original paper. 
The increase is ELO is almost linear till an ELO of 2300 for 
both programs. MantisShrimp is able to demonstrate a 
significant increase in learning rate which is only going to be 
more pronounced as the training continues. Since the 
program is written in python, it cannot be fairly compared 
against popular engines. Three extra hyper-parameters are 
introduced in MantisShrimp: The rate of change for τ, penalty 
for illegal moves, and minimum playouts needed per node 
Nmin. Further tuning of these would definitely improve the 
learning rate even more. These results also demonstrated 
that when the network is heavily penalized for wrong moves 
instead of masking them, the network has a better 
understanding of the game. This would have slowed down 
gradient descent as such a loss function would make learning 
much slower due to irregular gradient. The increase in speed 
from squeeze-and-excitation network helped make up for 
that. 

4. FUTURE WORK 
 
 Current plans for future work are limited to rewriting the 
program in C++ and optimizing the code to allow for a robust 
comparison with other popular engines. There were, 
however, several ideas that were not explored due to time 
limitations. One possibility is to reward the network for 
choosing moves that end the game in less moves. As of now, 
the value head assigns a score of 1 for a win which can be 
changed to provide lower loss for games won in shorter time. 
Another avenue to explore would be more diverse training 
data. Dirichlet noise or temperature may be increased during 
opening phase for a percentage of game. It might also be 
possible to modify MCTS for better performance. MCTS's 
random rollout has been replaced with Neural Network 
evaluation, but random rollouts can be considered when 
evaluation function is too expensive. Random rollouts can be 
done some x% times. If a good balance is found, the time 
taken per move can be reduced significantly without 
considerable hit to performance. Possibility of some form of 
Quiescent search can also be investigated for Monte Carlo 
Search Tree algorithm. 
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