
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3427

Accelerating AlphaZero’s Performance for chess

Yash Aggarwal1, Shashank S2

1Student, Dept. of Computer Science and Engineering, Mysore, India
2Asst. Professor, Dept. of Computer Science and Engineering, Mysore, India

---***---
Abstract - This paper presents several improvements to
Google's AlphaZero chess engine. A wide range of chess
engines have been created, either by using handcrafted
features or machine learning algorithms, with the purpose of
pushing the boundaries of what a computer can do and to
understand the game itself. Under this project, several studies
have been performed to further improve AlphaZero's
performance, both by analyzing existing engines and several
reinforcement learning technologies. Ultimately, a chess
engine, MantisShrimp was designed that is able to learn the
game features much faster than AlphaZero. This was majorly
achieved through modifying the deep learning network used
by AlphaZero and changing the learning methodology. The
loss function and action representation were also modified to
force the network into learning domain specific features.
Instead of just self-play, the network underwent supervised
training for a short period to speed up the learning process,
fine tune the hyper-parameters and prevent initial learning
bias.

Key Words: chess, reinforced learning, deep learning, zero-
sum game, monte carlo tree search, minimax

1. INTRODUCTION

 A co-relation has always been made between chess and
intelligence. It was, at a time, considered impossible that a
computer would ever be able to play chess. Chess is an
extremely complex game which requires unparalleled
reasoning and creativity and as such, it is an extremely
difficult task to program a computer to play chess at a
reasonably good level.

 In 1997, IBM's deep blue defeated the then reigning
champion and FIDE Grandmaster Gary Kasparov setting a
milestone for computer intelligence. In the coming years,
both the hardware and software advanced computers so far
that no human can you hope to match against any standard
chess program. A human searching 5-6 positions in future
will obviously overpowered by the brute force of a machine
that can analyze hundreds of positions per second. While the
early chess programs like Deep Blue leveraged their
hardware and relied on their brute computational power,
modern chess programs have focused on the software to
improve their performance. The open source chess engine
Stockfish can now easily defeat the top player in the world
running on a low-end smartphone.

 Any chess program has 2 major components: move search
and move evaluation. The programs from last decade like
Stockfish and Komodo uses a tree-based searching from a

position to create a game tree till a specified depth, and then
evaluates these positions using an algorithm to decide the
next best move. The evaluation algorithm consists of
handcrafted features and positions determined after long
research and statistical analysis. These programs play the
game in a piece-centric manner, as opposed to position
focused approach taken by human players.

 Researchers have tried to replace this evaluation function
with machine learning technologies, but it wasn't until
Google's AlphaZero in 2017 that machine learning made a
serious dent in the field. AlphaZero's move searching
algorithm is similar or comparable to the search algorithms
of traditional engines, but the evaluation function is actually a
Convolutional Neural Network, similar to the ones used for
state of art image recognition technologies. This project aims
at improving AlphaZero's performance at playing chess
through changing the deep learning architecture and
modifying the learning methodology. Instead of depending on
self-play, initial learning is done through having it play
against Stockfish, and it is only allowed to play against itself,
after it has learned a certain level. Some new advancements
in deep learning were utilized to further speed up the
learning process.

2. BACKGROUND AND RELATED WORK

2.1 Stockfish

 Minimax is a recursive algorithm for traversing the game
move tree used by Stockfish. It is similar to DPS algorithm
that traverses the tree assuming that opponent always picks
the most optimal move. A game of chess, however, has an
average branching factor of 35 and an average game has
around 40 moves. So during a game, the Minimax is usually
done to some fixed depth which is decided based on the game
type. When the maximum depth is reached, the evaluation
function is used to assign a score to those leaf positions
instead of going to higher depths. Quiescent search is also
used to avoid horizon effect. There can be some positions that
looks bad at current max depth but would have been bad if
maximum depth were increased. Horizon effect can occur
even if we keep increasing maximum depth. Such
troublesome positions need to be eliminated by going deeper
in every search process until the leaf nodes are all relatively
quiet positions. Quiet positions in chess are chess are ones
that are not a capture, check or immediate threat to the
opposition. These positions do not possess any horizon effect.
Stockfish uses 2 separate functions, one for endgame
evaluation and one for middlegame evaluation. During the
start, middle-game score has higher weightage. As the game

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3428

progresses, scale factor for endgame score increases and
phase decreases making endgame score more prominent.

2.2 AlphaZero Chess

Monte Carlo tree search or MCTS is the search algorithm
used by Alpha Zero instead of Minimax. Minimax has a major
disadvantage in that it tends to scan all or atleast more than
half branches even with $\alpha-\beta$ pruning. This is
highly impractical for a game like chess. MCTS overcomes
this by not going to the full depth of every branch and works
in a probabilistic fashion. AlphaZero uses PUCT instead of
UCB1 for traversing the search tree [1]. The evaluation
function is replaced by a CNN here, with ResNet modules to
prevent diminishing gradient problem.

3. MantisShrimp

3.1 Architecture

 The input state is similar to that of AlphaZero.
MantisShrimp uses 5 step history instead of AlphaZero's 8
step history. Some redundant planes have been combined in
the input such that the input highlights long plies of slow
progress. A major difference is in action representation.
While AlphaZero automatically masks illegal moves predicted
by the neural neural network in each stage of tree search,
MantisShrimp is forced to only make legal moves. This is
done by modifying loss function such that the network is
heavily penalized for illegal moves. The loss function uses
relative entropy (Kullback–Leibler divergence [10]) rather
than cross entropy to further emphasize the illegal move
error.

Table -1: MantisShrimp Input representation

Feature Planes
P1 Piece 6
P1 Piece 6
Repetitions 2
 x5
Color 1

P1 castling 2

P2 castling 2

Half-move Count 3

Total 78

z = Output from value head.

v = 1 if move resulted in a win, -1 if loss and 0 if draw.

 = Expected probability distribution.

p = Probability distribution by Neural Network after
scaling of illegal move probabilities.

q = Vector for illegal move penalization. If the
corresponding move is legal, q(i) is 1 and if move is illegal,
q(i) is 10.

 = Regularization Coefficient.

  = Network Weights.

By penalizing the network for illegal moves, we expect it
to learn the game's features better, and it would also prevent
internal layers from focusing on details that will not lead to a
legal move.

The ResNet blocks in the original network have been
modified with squeeze-and-excitation's global pooling paths.
This is expected to significantly reduce channel co-
dependencies [4]. Fig. 1 shows a Squeeze-and-Excitation
block. While normal CNN blocks give equal weightage to all
channels, the Squeeze-and-Excitation path learns and acts as
a weight for different channels.

Fig. 1: Converting a ResNet module to squeeze-and-
excitation ResNet module

Squeeze-and-Excitation blocks show prominent effects in
deeper layers where the Convolutional channels have more
pronounced features. AlphaZero's use of modified PUCT
brings about another problem. Functions like PUCT and UCB1
are designed to balance exploitation and exploration. The
original function has been modified to also account for
probability given by neural network P(S).

Si = ith state

Vi = Average score of ith state

Cpuct = Exploitation parameter. A constant used to balance
exploitation and exploration

N = No of visits of parent ith state

ni = Visit count for state

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3429

 P(Si) = The probability of node from the CNN network.

 If any move has been visited fewer times compared to
other moves, the algorithm would want to explore that move
more. Exploration refers to visiting less visited nodes and
Exploitation refers to visiting nodes with higher chance of
win. The constant Cpuct is used to balance the two. But if the
prior probability of that move is extremely low according to
the neural network, it might not be visited even with very low
visit count. This will cause an unintended horizon effect. To
avoid this, the child moves from root with very low visit
count have their PUCT score set to infinite so they are visited
even if network assigns them really low probabilities. The
game of chess can have average branching factor of 35-38.
Since every Monte Carlo Tree Search (MCTS) does have
maximum iterations set to 800, it was decided to modify
PUCT such that all moves that have been visited less than
0.5%, i.e. less than 4 times will be visited first.

 So that MCTS does not always select same move, a
randomness is introduced through temperature τ.
Temperature allows MCTS to select moves randomly from a
range of moves that are close to best, rather than selecting
best moves every time. A temperature of 10 means the moves
selected will have probability ±1%. While AlphaZero kept
temperature constant, MantisShrimp varies it for some games
to have more variation in training set.

3.2 Training Configuration

 The network weights are initialized as random. Instead of
using self-play from start, the network is first trained on 500
games played by top players to speed up learning initially.
The network then does 10 steps of training by playing against
Stockfish in batches of 500 games. This kind of supervised
learning prevents the network from acquiring bias in the
beginning. Other option to avoid such bias is to have game
start from some popular opening positions as done by
AlphaZero. MantisShrimp uses both.

At this point, the program is made to play against itself,
800 games a batch. The MCTS maximum iterations is limited
to 800 as well. A replay buffer/queue of latest 80000 games is
maintained for the network to learn from. The network
samples 2048 games from the replay buffer for a step of
training. The new network is then made to play against the
old network in a 1000 game match. The losing network is
discarded and the process is started again with new network.

Fig. 2: Learning Process

It was observed through experiments that Stockfish

performs better than LeelaZero (the best performing open
source AlphaZero clone) during endgames, when they are
made to continue a game position by human players. A major
reason for that can be lower variation in endgames for the
games the network is trained on. To solve this, temperature τ
is kept low during opening and is gradually increased as
game reaches the endgame phase for 40% of the self-play
games.

3.3 Performance Evaluation and Results

 ELO is a rating system used in chess that assigns a relative
score to players. MantisShrimp is written in python so it
cannot be accurately compared against any mainstream chess
programs. Therefore, an AlphaZero clone was created to

Fig. 3: Relative ELO for AlphaZero and MantisShrimp.
MantisShrimp's ELO before self-learning is 1003, so its

plot has been shifted for better comparison

compare learning speed for the two programs. If ELO is
known for one program, ELO for another program can be
determined by making the two programs play against each
other. Stockfish 11 was used for this comparison. It's ELO was

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3430

set at 4000 and the programs were made to play against it
per 5 steps of training. Fig. 3 compares relative ELO of the
two engines. AlphaZero was trained as in the original paper.
The increase is ELO is almost linear till an ELO of 2300 for
both programs. MantisShrimp is able to demonstrate a
significant increase in learning rate which is only going to be
more pronounced as the training continues. Since the
program is written in python, it cannot be fairly compared
against popular engines. Three extra hyper-parameters are
introduced in MantisShrimp: The rate of change for τ, penalty
for illegal moves, and minimum playouts needed per node
Nmin. Further tuning of these would definitely improve the
learning rate even more. These results also demonstrated
that when the network is heavily penalized for wrong moves
instead of masking them, the network has a better
understanding of the game. This would have slowed down
gradient descent as such a loss function would make learning
much slower due to irregular gradient. The increase in speed
from squeeze-and-excitation network helped make up for
that.

4. FUTURE WORK

 Current plans for future work are limited to rewriting the
program in C++ and optimizing the code to allow for a robust
comparison with other popular engines. There were,
however, several ideas that were not explored due to time
limitations. One possibility is to reward the network for
choosing moves that end the game in less moves. As of now,
the value head assigns a score of 1 for a win which can be
changed to provide lower loss for games won in shorter time.
Another avenue to explore would be more diverse training
data. Dirichlet noise or temperature may be increased during
opening phase for a percentage of game. It might also be
possible to modify MCTS for better performance. MCTS's
random rollout has been replaced with Neural Network
evaluation, but random rollouts can be considered when
evaluation function is too expensive. Random rollouts can be
done some x% times. If a good balance is found, the time
taken per move can be reduced significantly without
considerable hit to performance. Possibility of some form of
Quiescent search can also be investigated for Monte Carlo
Search Tree algorithm.

ACKNOWLEDGEMENT

 My deep gratitude to Shashank S, Asst. Professor in the
Department of Computer Science & Engineering at National
institute of Engineering, Mysore, for his guidance and support
during the course of this project.

REFERENCES

[1] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,

M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel,
T., Lillicrap, T.P., Simonyan, K., & Hassabis, D. (2017).
Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. ArXiv
abs/1712.01815.

[2] Stockfish evaluation guide. hxim.github.io/Stockfish-
Evaluation-Guide

[3] P Auer, N Cesa-Bianchi, P Fischer. Finite-time analysis of
the multirmed badit problem. Machine learning 47 (2-
3), 235-256.

[4] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu.
Squeeze-and-Excitation Networks. ArXiv
abs/1709.01507.
UCI: Communication Protocol for chess engines. wbec-
ridderkerk.nl/html/UCIProtocol.html

[5] Fuller, Samuel H.; Gaschnig, John G.; and Gillogly.
Analysis of the alpha-beta pruning algorithm (1973).
Computer ScienceDepartment.Paper 1701

[6] The Secret of Chess. Lyudmil Tsvetkov. ISBN-10:
1522041400. ISBN-13: 978-1522041405

[7] Sylvain Gelly, Yizao Wang. Exploration exploitation in
Go: UCT for Monte-Carlo Go. NIPS: Neural Information
Processing Systems Conference On-line trading of
Exploration and Exploitation Workshop, Dec 2006,
Canada. ffhal-00115330

[8] Kullback, S.; Leibler, R.A. (1951). On information and

sufficiency. Annals of Mathematical Statistics. 22(1):

79-86. doi:10.1214/aoms/117772969

