
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4144

Finding New Integer Constraints Incorporated with String Constraints

using Automata in Symbolic Execution

To Huu Nguyen1, Tran Thi Ngan2*

1University of Information and Communication Technology, Thai Nguyen, Vietnam
2Faculty of Computer Science and Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam;

---***--
Abstract – In computer programs, the string data appears
regularly, especially in the part of programs or methods. Java
language providing a large library of string data types but still
contains many bugs. In software testing, we are interested in
identifying bugs. In symbolic execution, string constraints are
also considered in most of cases. In this research, we propose
replacing the entire executable representation of an integer
with specific integer values and determining by best
estimating the integer constraint solver. Forces the string to
the specified integer value then. If those integer values do not
give the content string constraint satisfactory, we add the
negative integer constraints with the replaced value to the
integer constraint. Other specific values are generated
continuously until a satisfactory string value is obtained or it
is impossible to predict further specific integer values. We
conclude that the string constraint does not exist satisfying

value then.

Key Words: String constraints, integer constraint, constraint
solving, Java Path Finder, Automata.

1. INTRODUCTION

Any software needs to be tested before broadcasting. Many
security and effective testing applications have been
introduced. The purpose of these applications is to check
whether certain properties of a program satisfy any possible
usage scenario. Symbolic execution and concrete execution
are the most common strategies in software testing.
Symbolic execution was proposed by King et al. [9]. Symbolic
execution is a program analysis method used to execute a
program by symbolic values. The property was considered in
most cases in the execution. Symbolic execution often
explores multiple paths that a program could take under
different inputs. This means that the checked property of a
program is guaranteed [3]. Apart from the beneficial
characteristics, symbolic execution also has some challenges
such as

 Memory: symbolic execution may causes the path
exploration. The memory could rises rapidly from
handling pointers, arrays, or other complex objects.

 Environment: the interactions across the software stack
also need to be cared in testing process.

 State space explosion: using symbolic input instead of
concrete common input makes the path exploration. This

leads to the difficulty in solving the state space
exploration as well.

 Constraint solving: how can constraint solver work on a
software testing? In the testing progress, it maybe have
to deal with a huge amount of constraints.

Here is an example of symbolic execution [1]:

Fig-1. The source code

The result of symbolic execution is formed as a tree:

Fig -2. The result of test case generating using symbolic
execution

There are two basic techniques of software testing including
Black box testing and White box testing [10]. The differences
between two these strategies are presented as in below.

Black Box Testing: In Black box testing, the testers do not
know about the internal structure, design or implementation
of the item being tested. Because of this, the responsibility of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4145

Black box testing is independent to software testers. This
technique is applied mainly into high levels of testing, such
as: acceptance testing, system testing. Using Black box
testing, the implementation and programming knowledge
are not required.

The main advantages of Black box testing are [11] reducing
the number of test cases; having the independent between
programmer and tester and being effective on large units of
code. But it also have some disadvantages. For example, it is
difficult to design without clear specification. Although there
are many symbolic input were generated, a small numbers of
possible input can be tested. The repetition of tests is done
by programmers.

White Box Testing: In White box testing, the testers do know
about the internal structure, design or implementation of the
item being tested. The responsibility of White box testing
requires software developers. White box testing is often
applied into low levels of testing such as: unit testing,
integration testing. Both the implementation and
programming knowledge are required.

Here are some main advantages and disadvantages of White
box testing [11]:

Advantages: Every independent path will be exercised at
least once and this is same with all logical decisions. The
loops at boundaries were executed. The execution
equivalence show the approximation of partitioning.

 Disadvantages: The cases omitted in the code were missed
out. This needs the skilled tester. This type of testing is
nearly impossible to look into every bit of code in order to
find out hidden errors.

Apart from these two basic types, gray box testing is known
as a combination of Black box and White box testing. The
internal structure in gray box testing is partially known.

Based on these strategies of software testing, there are many
different techniques that have been used including static
testing (manual testing) [13] functional testing, dynamic
testing, structural testing and symbolic execution testing [5,
6].

In [2, 12], concepts of constraint programming was
introduced. Based on this technique, a dynamic symbolic
execution tool for JavaScrip was built. The experimental
results showed the effectivity of this proposal. In master
thesis, Harris [7] proposed four automata-based symbolic
string models for PSE and analyzes their suitability using
two criteria: accuracy and performance. The probability
computed by these models was compared to the actual
probability and the amount of time took to compute it.

In this paper, we intend to introduce a semi-supervised
learning method in symbolic execution in order to increase
the performance of testing progress. Learning method is
applied in the first stage to optimize the libraries or

functions of testing process. From this application, the
results of testing will be better.

The remaining contents of this paper is organized as follow:
Section 2 shows the related researches. Section 3 presents
the methodology of proposed model. Experimental results
are given in Section 4 and some conclusions are stated in last
section.

2. RELATED WORKS

All programs needs to be tested. To do this effectively,
people have to know about the fundamental of testing
consisting of the principle, goals, techniques and strategies of
software testing. In [11], Sawant et al. presented in detail
every concepts of software testing. The differences among
software testing techniques were also explained and the
differences between testing and debugging were stated in
this paper.

Jamil et al. [8] introduced the existing testing methods based
on the mentioned classification of testing method techniques
and a software testing life cycle. Besides, the testing process
was enhanced by various methods such as automation test,
agile, test driven development. In this paper, authors stated
that the simulation tool also supported effectively in
software testing. Thus, simulation model based software
testing techniques would develop.

Symbolic execution is a powerful technique for bug finding
and program testing. It is successful in finding bugs in real-
world code. The core reasoning techniques use constraint
solving, path exploration, and search, which are also the
same techniques used in solving combinatorial problems.

Symbolic execution is increasingly used not only in academic
settings but also in industry, e.g. in Microsoft, NASA, IBM and
Fujitsu, and even at the Pentagon. Many symbolic execution
engines have been built targeting different programming
languages and architectures. This trend is expected to
intensify in the future. Symbolic execution in a distributed
setting, leveraging cloud technology, such as Cloud9 [22],
SAGE [23], and MergePoint [24], is expected to further
extend the applicability of the technique in practice

Symbolic execution used symbol inputs instead of discrete
inputs. It was used to check if some certain properties can be
violated [3]. The symbolic execution was also integrated
with search-based testing in programs with complex heap
inputs [4]. In this way, the test cases were generated
automatically. Symbolic execution was used in order to
generate path conditions. The obtained path conditions were
formed as an optimal problem and solved by search-based
techniques.

Vanhoef, M., & Piessens [14] showed the way to simulate
efficiently cryptographic primitives in symbolic execution
progress. This approach was applied successfully in client
side implementations of the 4-way handshake of WPA2. A
review of symbolic execution and associated tools was

http://softwaretestingfundamentals.com/acceptance-testing/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/integration-testing/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4146

presented by Păsăreanu et al. [15]. Moreover, the main
challenges of symbolic execution in applying into practical
problems were provided. These problems included handling
of programs with complex inputs, coping with path
explosion and ameliorating the cost of constraint solving.
The survey of promising applications and the finding of
worst-case execution time in programs, load testing and
security analysis, ... was presented.

In symbolic execution, constraint satisfaction problem
instances were introduced by Verma and Yap [16]. These
instances were used to evaluate the effectiveness of the core
techniques in symbolic execution. The benchmarks of this
form can spur the development and engineering of improved
core reasoning in symbolic execution engines. Solving
constraints is one of the most important steps in symbolic
execution. Many constraint solvers were proposed in various
researches [17-19]. In [19], the transformation of constraints
into functions with specific properties was introduced. These
functions were called as Satisfaction Functions. The
satisfaction function was generated by taking maximum. The
values satisfying the corresponding constraint are obtained.
The performance this approach was comparable with three
constraint solvers that were known to be able to solve non-
linear real constraints. Other issues related to constraint
solving were also concerned by scientists [20, 21].

3. METHODOLOGY

In this research, we are using the model consisting of
following steps:

1. Path bound conditions will be converted to an
intermediate format.

2. Solve or simplify the intermediate format.

3. Replace the integer symbol variable with specific
conjecture values.

4. Convert intermediate format to automata or bitvector
operations.

5. If the binding on automata or bitvector fails, repeat step 3
with other integer specific values in the best set of integer
values.

6. The unbound process ends if the matching string value is
found or within a limited period of time without finding
new integer values, and the unbinding process on the
automata and bitvector is invalid.

Automata-based constraint solving reduces the model
counting problem to path counting. To count the number of
values that satisfy the given constraint within a given
domain bound, we count the number of accepting paths in
the automaton within the path length bound that
corresponds to said domain bound. We use techniques from
algebraic graph theory to solve the path counting problem.

This algorithm supplies the procedure that operates on a
automaton A passed by reference. This automaton has a
track for each variable and term in . In which:

 is one of the following: a conjunction of numeric and string
constraints; a string constraint; a numeric constraint; a
string term; or a numeric term.

The operators in this table include:

 {=, , <, ≤, >, , match,  match, contains,  contains,
begin,  begin, end,  end }

 {, +, , length, toin, indexof, lastindexof, reverse,
tostring, charat, substring, replacefirst, replacelast,
replaceall}.

Then the description of this algorithm is presented as below:

Algorithm-1: Solve the path counting problem.

Many web server requests are compressed and encrypted
for efficiency and security before transmission as a network
packet. Despite the encryption, a malicious attacker who can
observe network packet sizes can use the compression size
to learn secret web-session information. Assume an attacker
can inject and concatenate his own text with the secret text
prior to compression. The smaller the resulting packet, the
more compression must have occurred prior to encryption,
and so the attacker-controlled input must contain sub-
strings which match substrings of the secret text. In the
CRIME attack, encryption does not significantly change the
size of the packet, as many encryption protocols are size-
preserving. Thus, by carefully crafting injected inputs, an
attacker can incrementally reveal the secret text.

As just described, we can precisely solve multi-variable
linear integer arithmetic constraints by constructing a multi-
track binary integer automaton that recognizes tuples of
solutions. However, integer variable solutions can be related
to string variables through operations that have both string
and integer parameters such as length or index of. Given the
Deterministic Finite Automaton (DFA) representing the
solutions for integer variables, we must propagate the
constraints imposed by the integer solutions to each related
string variable. We do so by first converting the binary DFA
solution representation A for an integer variable i to a set
comprehension representation S.

We described how to propagate solutions from binary
integer DFA to string DFA. In order to propagate solutions
from string DFA to binary integer DFA, we reverse this

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4147

process by converting a string DFA into a unary length DFA,
extracting the semi-linear set, and constructing the
corresponding binary integer DFA.

By using the notation as below:

 {, +, , length, toin, indexof, lastindexof, reverse,
tostring, charat, substring, replacefirst, replacelast,
replaceall}.

This algorithm also provides the procedure that operates on
a automaton A passed by reference. This automaton has a
track for each variable and term in . The detail of the
algorithm is introduced as follow:

Algorithm -2: propagate solutions from binary integer DFA
to string DFA.

Since the negation operator is non-monotonic and since we
sometimes over-approximate the solution sets of
subformulas, before the automata construction, we convert
the input formula to negation normal form by pushing
negations to atomic formulas. For disjunctions, each disjunct
has its own automaton. Then, the automaton for the
disjunction corresponds to the automaton that accepts the
union of sets accepted by each disjunct automaton. We
compute the union automaton using automata product.

4. CONCLUSIONS

Constraint solvers are well-known tools for solving many
real-world problems such as theorem proving and real-time
scheduling. One of the domains that strongly relies on
constraint solvers is the technique of symbolic execution for
automatic test data generation. Many researchers have tried
to alleviate the shortcomings of the available constraint
solvers to improve their applications in symbolic execution
for test data generation. Despite many recent improvements,
constraint solvers are still unable to efficiently deal with
certain types of constraints. In particular, constraints that
include non-linear real arithmetic are among the most
challenging ones.

In this research, we introduce two algorithms that are used
in solving the constraints and propagating solutions from
binary integer DFA to string DFA.

Based on this, we can find new integer constraints
incorporated with string constraints.

In future studies, we will try to apply these approaches to an
application. Then, the effectivity of proposed algorithms is
evaluated.

REFERENCES

[1]. Albert, E., Arenas, P., Gómez-Zamalloa, M., & Rojas, J.
M. (2014, June). Test case generation by symbolic
execution: basic concepts, a CLP-based instance, and
actor-based concurrency. In International School on
Formal Methods for the Design of Computer,
Communication and Software Systems (pp. 263-309).
Springer, Cham.

[2]. Amadini, R., Andrlon, M., Gange, G., Schachte, P.,
Søndergaard, H., & Stuckey, P. J. (2019, June).
Constraint Programming for Dynamic Symbolic
Execution of JavaScript. In International Conference on
Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (pp. 1-19).
Springer, Cham.

[3]. Baldoni, R., Coppa, E., D’elia, D. C., Demetrescu, C., &
Finocchi, I. (2018). A survey of symbolic execution
techniques. ACM Computing Surveys (CSUR), 51(3), 50.

[4]. Braione, P., Denaro, G., Mattavelli, A., & Pezzè, M.
(2017, July). Combining symbolic execution and
search-based testing for programs with complex heap
inputs. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and
Analysis (pp. 90-101). ACM.

[5]. Cadar, C., & Sen, K. (2013). Symbolic execution for
software testing: three decades later. Communications
of the ACM, 56(2), 82-90.

[6]. Gaston, C., Le Gall, P., Rapin, N., & Touil, A. (2006,
May). Symbolic execution techniques for test purpose
definition. In IFIP International Conference on Testing
of Communicating Systems (pp. 1-18). Springer, Berlin,
Heidelberg.

[7]. Harris, Andrew, "Suitability of Finite State Automata
to Model String Constraints in Probablistic Symbolic
Execution" (2019). Boise State University Theses and
Dissertations. 1597.

[8]. Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A.
(2016, November). Software Testing Techniques: A
Literature Review. In Information and Communication
Technology for The Muslim World (ICT4M), 2016 6th
International Conference on (pp. 177-182). IEEE.

[9]. King, J. C. (1976). Symbolic execution and program
testing. Communications of the ACM, 19(7), 385-394.

[10]. Nidhra, S., & Dondeti, J. (2012). Black box and white
box testing techniques-a literature review.
International Journal of Embedded Systems and
Applications (IJESA), 2(2), 29-50.

[11]. Sawant, A. A., Bari, P. H., & Chawan, P. M. (2012).
Software testing techniques and strategies.
International Journal of Engineering Research and
Applications (IJERA), 2(3), 980-986.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4148

[12]. Søndergaard, H., & Stuckey, P. J. (2019, June).
Constraint Programming for Dynamic Symbolic
Execution of JavaScript. In Integration of Constraint
Programming, Artificial Intelligence, and Operations
Research: 16th International Conference, CPAIOR 2019,
Thessaloniki, Greece, June 4–7, 2019, Proceedings (Vol.
11494, p. 1). Springer.

[13]. Shyam-Sunder, L., & Myers, S. C. (1999). Testing static
tradeoff against pecking order models of capital
structure1. Journal of financial economics, 51(2), 219-
244.

[14]. Vanhoef, M., & Piessens, F. (2018). Symbolic execution
of security protocol implementations: handling
cryptographic primitives. In 12th {USENIX} Workshop
on Offensive Technologies ({WOOT} 18).

[15]. Păsăreanu, C. S., Kersten, R., Luckow, K., & Phan, Q. S.
(2019). Symbolic Execution and Recent Applications
to Worst-Case Execution, Load Testing, and Security
Analysis. In Advances in Computers (Vol. 113, pp. 289-
314). Elsevier.

[16]. Verma, S., & Yap, R. H. (2019, November).
Benchmarking Symbolic Execution Using Constraint
Problems-Initial Results. In 2019 IEEE 31st
International Conference on Tools with Artificial
Intelligence (ICTAI) (pp. 1-9). IEEE.

[17]. Amadini, R., Andrlon, M., Gange, G., Schachte, P.,
Søndergaard, H., & Stuckey, P. J. (2019, June).
Constraint Programming for Dynamic Symbolic
Execution of JavaScript. In International Conference
on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (pp. 1-19).
Springer, Cham.

[18]. Kapus, T., Nowack, M., & Cadar, C. (2019, October).
Constraints in Dynamic Symbolic Execution:
Bitvectors or Integers?. In International

[19]. Amiri-Chimeh, S., & Haghighi, H. (2019). An approach
to solving non-linear real constraints for symbolic
execution. Journal of Systems and Software, 157,
110383.

[20]. Chekam, T. T., Papadakis, M., Cordy, M., & Traon, Y. L.
(2020). Killing Stubborn Mutants with Symbolic
Execution. arXiv preprint arXiv:2001.02941.

[21]. Mukherjee, R., Joshi, S., O'Leary, J., Kroening, D., &
Melham, T. (2020). Hardware/Software Co-
verification Using Path-based Symbolic Execution.
arXiv preprint arXiv:2001.01324.

[22]. L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G.
Candea. Cloud9: A Software Testing Service. SIGOPS
Oper. Syst. Rev., 43(4):5–10, Jan. 2010

[23]. P. Godefroid, M. Y. Levin, and D. Molnar. SAGE:
Whitebox Fuzzing for Security Testing. Queue,
10(1):20:20–20:27, Jan. 2012.

[24].] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley.
Enhancing Symbolic Execution with Veritesting. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 1083–1094,
New York, NY, USA, 2014. ACM.

BIOGRAPHIES

Msc. To Huu Nguyen received the
Bachelor Education of Information
Technology at Thai Nguyen University
of Education in 2003 and Master degree
on Computer Science at Thainguyen
University in 2008. He worked as a
lecturer at Faculty of Information
Technology, School of Information and
Communication Technology,
Thainguyen University from 2004. Now,
he is a researcher at Institute of
Information Technology, Academic
Institute of Science and Technology,
Vietnam. Office address: University of
Information and Communication
Technology, Thai Nguyen University,
Thai Nguyen, Vietnam.

Dr. Tran Thi Ngan obtained the
Bachelor degrees on Mathematics-
Informatics at VNU University of
Science, Vietnam National University
(VNU). She got Master degree on
Computer Science at Thai Nguyen
University. She received PhD degree on
applied Mathematics – Informatics at
Hanoi University of Science and
Technology. Her major interests are
discrete mathematics, Monte Carlo
method, optimization, probability
theory and statistics, machine learning.

