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Abstract – In computer programs, the string data appears 
regularly, especially in the part of programs or methods. Java 
language providing a large library of string data types but still 
contains many bugs. In software testing, we are interested in 
identifying bugs. In symbolic execution, string constraints are 
also considered in most of cases. In this research, we propose 
replacing the entire executable representation of an integer 
with specific integer values and determining by best 
estimating the integer constraint solver. Forces the string to 
the specified integer value then. If those integer values do not 
give the content string constraint satisfactory, we add the 
negative integer constraints with the replaced value to the 
integer constraint. Other specific values are generated 
continuously until a satisfactory string value is obtained or it 
is impossible to predict further specific integer values. We 
conclude that the string constraint does not exist satisfying 

value then. 
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1. INTRODUCTION  
 
Any software needs to be tested before broadcasting. Many 
security and effective testing applications have been 
introduced. The purpose of these applications is to check 
whether certain properties of a program satisfy any possible 
usage scenario. Symbolic execution and concrete execution 
are the most common strategies in software testing. 
Symbolic execution was proposed by King et al. [9]. Symbolic 
execution is a program analysis method used to execute a 
program by symbolic values. The property was considered in 
most cases in the execution. Symbolic execution often 
explores multiple paths that a program could take under 
different inputs. This means that the checked property of a 
program is guaranteed [3]. Apart from the beneficial 
characteristics, symbolic execution also has some challenges 
such as  

 Memory: symbolic execution may causes the path 
exploration. The memory could rises rapidly from 
handling pointers, arrays, or other complex objects. 

 Environment: the interactions across the software stack 
also need to be cared in testing process.  

 State space explosion: using symbolic input instead of 
concrete common input makes the path exploration. This 

leads to the difficulty in solving the state space 
exploration as well.  

 Constraint solving: how can constraint solver work on a 
software testing? In the testing progress, it maybe have 
to deal with a huge amount of constraints. 

Here is an example of symbolic execution [1]: 

 

Fig-1. The source code 

The result of symbolic execution is formed as a tree: 

 

Fig -2. The result of test case generating using symbolic 
execution 

There are two basic techniques of software testing including 
Black box testing and White box testing [10]. The differences 
between two these strategies are presented as in below. 

Black Box Testing: In Black box testing, the testers do not 
know about the internal structure, design or implementation 
of the item being tested. Because of this, the responsibility of 
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Black box testing is independent to software testers. This 
technique is applied mainly into high levels of testing, such 
as: acceptance testing, system testing. Using Black box 
testing, the implementation and programming knowledge 
are not required.  

The main advantages of Black box testing are [11] reducing 
the number of test cases; having the independent between 
programmer and tester and being effective on large units of 
code. But it also have some disadvantages. For example, it is 
difficult to design without clear specification. Although there 
are many symbolic input were generated, a small numbers of 
possible input can be tested. The repetition of tests is done 
by programmers. 

White Box Testing: In White box testing, the testers do know 
about the internal structure, design or implementation of the 
item being tested. The responsibility of White box testing 
requires software developers. White box testing is often 
applied into low levels of testing such as: unit testing, 
integration testing. Both the implementation and 
programming knowledge are required. 

Here are some main advantages and disadvantages of White 
box testing [11]: 

Advantages: Every independent path will be exercised at 
least once and this is same with all logical decisions. The 
loops at boundaries were executed. The execution 
equivalence show the approximation of partitioning.  

 Disadvantages: The cases omitted in the code were missed 
out. This needs the skilled tester. This type of testing is 
nearly impossible to look into every bit of code in order to 
find out hidden errors. 

Apart from these two basic types, gray box testing is known 
as a combination of Black box and White box testing. The 
internal structure in gray box testing is partially known.  

Based on these strategies of software testing, there are many 
different techniques that have been used including static 
testing (manual testing) [13] functional testing, dynamic 
testing, structural testing and symbolic execution testing [5, 
6].  

In [2, 12], concepts of constraint programming was 
introduced. Based on this technique, a dynamic symbolic 
execution tool for JavaScrip was built. The experimental 
results showed the effectivity of this proposal. In master 
thesis, Harris [7] proposed four automata-based symbolic 
string models for PSE and analyzes their suitability using 
two criteria: accuracy and performance. The probability 
computed by these models was compared to the actual 
probability and the amount of time took to compute it. 

In this paper, we intend to introduce a semi-supervised 
learning method in symbolic execution in order to increase 
the performance of testing progress. Learning method is 
applied in the first stage to optimize the libraries or 

functions of testing process. From this application, the 
results of testing will be better. 

The remaining contents of this paper is organized as follow: 
Section 2 shows the related researches. Section 3 presents 
the methodology of proposed model. Experimental results 
are given in Section 4 and some conclusions are stated in last 
section. 

2. RELATED WORKS 

All programs needs to be tested. To do this effectively, 
people have to know about the fundamental of testing 
consisting of the principle, goals, techniques and strategies of 
software testing. In [11], Sawant et al. presented in detail 
every concepts of software testing. The differences among 
software testing techniques were also explained and the 
differences between testing and debugging were stated in 
this paper.  

Jamil et al. [8] introduced the existing testing methods based 
on the mentioned classification of testing method techniques 
and a software testing life cycle. Besides, the testing process 
was enhanced by various methods such as automation test, 
agile, test driven development. In this paper, authors stated 
that the simulation tool also supported effectively in 
software testing. Thus, simulation model based software 
testing techniques would develop. 

Symbolic execution is a powerful technique for bug finding 
and program testing. It is successful in finding bugs in real-
world code. The core reasoning techniques use constraint 
solving, path exploration, and search, which are also the 
same techniques used in solving combinatorial problems.  

Symbolic execution is increasingly used not only in academic 
settings but also in industry, e.g. in Microsoft, NASA, IBM and 
Fujitsu, and even at the Pentagon. Many symbolic execution 
engines have been built targeting different programming 
languages and architectures. This trend is expected to 
intensify in the future. Symbolic execution in a distributed 
setting, leveraging cloud technology, such as Cloud9 [22], 
SAGE [23], and MergePoint [24], is expected to further 
extend the applicability of the technique in practice 

Symbolic execution used symbol inputs instead of discrete 
inputs. It was used to check if some certain properties can be 
violated [3]. The symbolic execution was also integrated 
with search-based testing in programs with complex heap 
inputs [4]. In this way, the test cases were generated 
automatically. Symbolic execution was used in order to 
generate path conditions. The obtained path conditions were 
formed as an optimal problem and solved by search-based 
techniques. 

Vanhoef, M., & Piessens [14] showed the way to simulate 
efficiently cryptographic primitives in symbolic execution 
progress. This approach was applied successfully in client 
side implementations of the 4-way handshake of WPA2. A 
review of symbolic execution and associated tools was 

http://softwaretestingfundamentals.com/acceptance-testing/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/integration-testing/
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presented by Păsăreanu et al. [15]. Moreover, the main 
challenges of symbolic execution in applying into practical 
problems were provided. These problems included handling 
of programs with complex inputs, coping with path 
explosion and ameliorating the cost of constraint solving. 
The survey of promising applications and the finding of 
worst-case execution time in programs, load testing and 
security analysis, ... was presented. 

In symbolic execution, constraint satisfaction problem 
instances were introduced by Verma and Yap [16]. These 
instances were used to evaluate the effectiveness of the core 
techniques in symbolic execution. The benchmarks of this 
form can spur the development and engineering of improved 
core reasoning in symbolic execution engines. Solving 
constraints is one of the most important steps in symbolic 
execution. Many constraint solvers were proposed in various 
researches [17-19]. In [19], the transformation of constraints 
into functions with specific properties was introduced. These 
functions were called as Satisfaction Functions. The 
satisfaction function was generated by taking maximum. The 
values satisfying the corresponding constraint are obtained. 
The performance this approach was comparable with three 
constraint solvers that were known to be able to solve non-
linear real constraints. Other issues related to constraint 
solving were also concerned by scientists [20, 21]. 

3. METHODOLOGY 

In this research, we are using the model consisting of 
following steps: 

1. Path bound conditions will be converted to an 
intermediate format. 

2. Solve or simplify the intermediate format. 

3. Replace the integer symbol variable with specific 
conjecture values. 

4. Convert intermediate format to automata or bitvector 
operations. 

5. If the binding on automata or bitvector fails, repeat step 3 
with other integer specific values in the best set of integer 
values. 

6. The unbound process ends if the matching string value is 
found or within a limited period of time without finding 
new integer values, and the unbinding process on the 
automata and bitvector is invalid. 

Automata-based constraint solving reduces the model 
counting problem to path counting. To count the number of 
values that satisfy the given constraint within a given 
domain bound, we count the number of accepting paths in 
the automaton within the path length bound that 
corresponds to said domain bound. We use techniques from 
algebraic graph theory to solve the path counting problem. 

This algorithm supplies the procedure that operates on a 
automaton A passed by reference. This automaton has a 
track for each variable and term in . In which: 

 is one of the following: a conjunction of numeric and string 
constraints; a string constraint; a numeric constraint; a 
string term; or a numeric term. 

The operators in this table include: 

 {=, , <, ≤, >, , match,  match, contains,  contains, 
begin,  begin, end,  end } 

 {, +, , length, toin, indexof, lastindexof, reverse, 
tostring, charat, substring, replacefirst, replacelast, 
replaceall}. 

Then the description of this algorithm is presented as below: 

Algorithm-1: Solve the path counting problem. 

 

Many web server requests are compressed and encrypted 
for efficiency and security before transmission as a network 
packet. Despite the encryption, a malicious attacker who can 
observe network packet sizes can use the compression size 
to learn secret web-session information. Assume an attacker 
can inject and concatenate his own text with the secret text 
prior to compression. The smaller the resulting packet, the 
more compression must have occurred prior to encryption, 
and so the attacker-controlled input must contain sub-
strings which match substrings of the secret text. In the 
CRIME attack, encryption does not significantly change the 
size of the packet, as many encryption protocols are size-
preserving. Thus, by carefully crafting injected inputs, an 
attacker can incrementally reveal the secret text. 

As just described, we can precisely solve multi-variable 
linear integer arithmetic constraints by constructing a multi-
track binary integer automaton that recognizes tuples of 
solutions. However, integer variable solutions can be related 
to string variables through operations that have both string 
and integer parameters such as length or index of. Given the 
Deterministic Finite Automaton (DFA) representing the 
solutions for integer variables, we must propagate the 
constraints imposed by the integer solutions to each related 
string variable. We do so by first converting the binary DFA 
solution representation A for an integer variable i to a set 
comprehension representation S. 

We described how to propagate solutions from binary 
integer DFA to string DFA. In order to propagate solutions 
from string DFA to binary integer DFA, we reverse this 
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process by converting a string DFA into a unary length DFA, 
extracting the semi-linear set, and constructing the 
corresponding binary integer DFA. 

By using the notation as below: 

 {, +, , length, toin, indexof, lastindexof, reverse, 
tostring, charat, substring, replacefirst, replacelast, 
replaceall}. 

This algorithm also provides the procedure that operates on 
a automaton A passed by reference. This automaton has a 
track for each variable and term in . The detail of the 
algorithm is introduced as follow: 

Algorithm -2: propagate solutions from binary integer DFA 
to string DFA. 

 

Since the negation operator is non-monotonic and since we 
sometimes over-approximate the solution sets of 
subformulas, before the automata construction, we convert 
the input formula to negation normal form by pushing 
negations to atomic formulas. For disjunctions, each disjunct 
has its own automaton. Then, the automaton for the 
disjunction corresponds to the automaton that accepts the 
union of sets accepted by each disjunct automaton. We 
compute the union automaton using automata product. 

4. CONCLUSIONS 

Constraint solvers are well-known tools for solving many 
real-world problems such as theorem proving and real-time 
scheduling. One of the domains that strongly relies on 
constraint solvers is the technique of symbolic execution for 
automatic test data generation. Many researchers have tried 
to alleviate the shortcomings of the available constraint 
solvers to improve their applications in symbolic execution 
for test data generation. Despite many recent improvements, 
constraint solvers are still unable to efficiently deal with 
certain types of constraints. In particular, constraints that 
include non-linear real arithmetic are among the most 
challenging ones.  
 
In this research, we introduce two algorithms that are used 
in solving the constraints and propagating solutions from 
binary integer DFA to string DFA.  
 
Based on this, we can find new integer constraints 
incorporated with string constraints. 
 

In future studies, we will try to apply these approaches to an 
application. Then, the effectivity of proposed algorithms is 
evaluated. 
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