
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4189

Automated Carrom Bot

Adit Doshi1, Sushrut Ranade2, Huzefa Painter3, Prof. Monika Kanojiya4

1B.E Student, Dept. of Computer Engineering, SAKEC, Mumbai, Maharashtra, India
2B.E Student, Dept. of Computer Engineering, SAKEC, Mumbai, Maharashtra, India
3B.E Student, Dept. of Computer Engineering, SAKEC, Mumbai, Maharashtra, India

4AssistantProfessor, Dept. of Computer Engineering, SAKEC, Mumbai, Maharashtra, India
---***--

Abstract - An automated Carrom bot to play against
a human, which can scan the whole board, choose the
next shot, calculate angles, and the power required to
hit the piece so that it can reach the pocket. After each
shot, the Bot can identify the next shot so that it can
pot all the coins and win the game. This Bot plays with
you and, at the same time, helps you to improve your
Carrom skills. It can analyse the coins on the Carrom
board using its intelligence and can select the best shot
that it can play to win the game. In a world where
people prefer outdoor sports over indoor games,
people can improve their skills by playing against such
a bot, which always has better skills than a human
player.

Index Terms: - Automated Bot, Decision Tree,

Object Detection, Carrom, Interdisciplinary.

1. INTRODUCTION:

Pocket Bot is an automated bot that can analyze the coins
on the Carrom board, and using its intelligence can select
the best shot that it can play to win the game. This Bot is
highly accurate, up to 0.01 mm of any movement. This is
essential as a slight inaccuracy can result in an
unsuccessful shot. Being an amalgamation of multiple
motors and sensors, this is a complex build for beginners
who have only recently dabbled with robotics. Not only
that, the calculations, basic understanding of A.I, and
programming knowledge makes this an interdisciplinary
project. It cannot only calculate the best shot but also,
make sure it is executed perfectly. All this is done solely
using the Raspberry Pi 3 including, controlling the motors
and all the calculations.

2. LITERATURE REVIEW:

Our focus here is to build a new system by using various
predefined algorithms available, combining the algorithms
we can simplify the work to be done, such as combining
Shape Detection Algorithm, Colour Detection Algorithm to
detect and identify various coins present on our carrom
board. The first approach here is to make the algorithm
work without considering the accuracy of the system, as
the accuracy and efficiency of the algorithm can be
improved later. Here the initial accuracy of the hardware

was close to 0.5mm, but this caused many issues as coins
in particular angles couldn’t be targeted, so after
improving the efficiency and accuracy, we were able to
increase the accuracy to 0.1mm which can target almost
all coins in all possible angles.

3. PROPOSED SYSTEM:

3.1 Problem Statement:

“To identify the coins present on the board, and increase
shot efficiency of the bot to hit each and every possible
angle on the board with the best accuracy”

3.2 Proposed System Architecture:

Fig 2.1 : Workflow

3.3 Proposed Methodology:

We will be using Thonny as our base platform for the
purpose of coding. Our Methodology involves use of
OpenCV, Hough Transform algorithms to detect shapes
and colours of our coins so that the bot can process this
information and decide which coin is allowed to hit.

Steps involved: -

1. Capture images of the board, and identify various
coins present.

2. Process this information to calculate the exact
position of the coins.

3. Calculate the power required and then adjust the
angle of the striking mechanism.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4190

4. IMPLEMENTATION:
 The robot first begins by clicking two images of the
board with different positions of the striking mechanism.
Combining the two, it looks out for all the coins on the
board, and which ones of them are the right color (team)
to hit. After this, it calculates which of these has the best
chance to be potted in a pocket It then calculates the angle,
power, and how much it has to move from its current
position to the target position.

 Now it commands the Stepper Motor (A NEMA-17) to
move a certain number of steps in either direction needed.
After this, a set of 4 servo motors come into play (MG 995).
A servo first sets the striking mechanism down on the
playing board. Then a set of 3 servos on that mechanism
work together to: Set the angle of the shot, set the power,
and a third servo to lock it in place until released to fire
the shot. However, we do not have the resources to
implement a striker pick-up mechanism.

Fig 4.1: 3 Servo motors working together and acting as a
Striking mechanism to take a shot

 Right after it takes the shot, the first servo activates
again to lift the mechanism off the playing board. This is
done to clear the area for the current, and future shots to
play out until it is its own turn again. Horizontal
movement is done using the Stepper Motor. The bot rides
on a plate situated on a simple screw and nut mechanism,
where the stepper rotates the nut and thus moves along
the screw.

Fig 4.2: Stepper motor carrying bot to its appropriate
location

 Now, all calculations are done by the Raspberry Pi 3,
powered by a power bank situated on the top alongside
the camera responsible for taking the images at the start.
All the communication between the servo motors is done
directly through the GPIO pins. The stepper motor,
however, requires a Driver, which the Pi uses GPIO pins to
communicate with, and the Driver will, in turn, run the
motor accordingly.

Fig 4.3: Raspberry pi 3 situated on top and Pi cam
underneath capturing the photo of board

 Other calculations in the Raspberry Pi, such as detecting
the coins, are done using Hough Circle Transform and
Color detection algorithms. The A.I responsible for
selecting the shot is self-coded and is a relatively basic
decision tree. Future versions will include a Model-Based
Agent. This is not done as of writing this paper as previous
models for this problem do not exist. However, with a
Model-Based Agent, we are sure it will improve the shot
accuracy, to a point where professional Carrom players
have fierce competition.

 Since the image is taken from the same position every
time, we have hard-coded the location of the four pockets,
as well as the legal bases and baselines. This helps in
avoiding trying to detect those lines and circles separately.
We first convert the image into grayscale. Then, using
image arithmetic, we separate the coins and the other
different circles on the board from each other. The
grayscale helps in making color detection easier, with the
lighter ones being the white team and the darker being
black and the middle tone being the queen.

4. A) Working of our Hardware:

 Right after identifying the coins, the Pi starts
calculating for different shots. It picks the most accessible
of them by a measure of how "straight" the line from the
striker to the coin to the pocket is. Now for the execution
of that shot, we move towards motor calculations. We
know all current values for each motor beforehand. It's
easy to calculate the distance to move, but we need to
convert it to "steps" for the stepper or "degrees" for the
servos. For the servos, we need to understand their duty

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4191

cycles as Python does not have predefined codes for
servos like an Arduino.

 "Duty Cycle" is the width of positive pulse (Square
wave) or how long it is "active." For a servo with a 2ms
Duty Cycle, it means at 2ms Duty Cycle it is at the
maximum rotation degree (180 or in some cases 270). At
1ms Duty Cycle, it is at its lowest, i.e., 0 degrees. Now, the
servo holds this position with constant updates at the
frequency it states. For example, the most common
frequency of servos is 50Hz. This means 50 times a
second, and it would require a pulse to determine it's next
position. So, every 0.02 or 20ms it requires a pulse. Thus,
in every 20ms, it needs one Duty Cycle, and therefore it
has high accuracy with quick updates. Now, this would be
easy with an Arduino where you can set the Duty Cycle
directly to be output. However, with a Pi, you cannot do
that. Instead, you will need to use software-based PWM
(Pulse Width Modulation).

 In Python, we have RPi. GPIO library which helps
in reprogramming the GPIO pins of the Raspberry Pi. It
allows us to use software-based PWM. However, it's never
that easy. The PWM needs to be such that it represents the
duty cycle, which means mapping a 1-2ms Duty Cycle per
20ms to its PWM equivalent.

 This problem is similar to finding a point on a line,
where for some value of x, what is the value of y? Where
0,0 might be the start point and 13.7,180 the end.
Calculating the slope and thus the formula for this line, we
can find any value of y of some x. So now, we can convert
any angle required in degrees to a PWM cycle. This is a
convenient conversion as we can use this to control all
other servos as well—for example, the servo that is
responsible for the power. We can decide how much
power we need depending on the percentage of rotation
between 0-180.

 Now for the stepper motor, we have to use a
Driver. Again, unlike Arduino, we don't have predefined
codes for a stepper too. Again, using RPI.GPIO, we can set
up the GPIO pins to simulate how a stepper driver needs
input. Depending on how fast it can take steps, we can turn
the output on, then off for some delay and back on. This
makes the Driver think pulses are coming in as expected.
Each pulse means a step, and delays can go down to
0.0001s(In some cases even lower). In this way, speed can
also be adjusted depending on how long the delay is. All
this is for the STEP pin, which controls how many steps
the motor takes. The DIR pin is much simpler, with it
having 2 values HIGH or LOW, which can be set for
clockwise or anti-clockwise, respectively.

 Combining these two pins, we can have any
desired movement along the screw. We do have to keep in
mind the number of steps it needs to go a complete 360
degrees. This is very important as it can vary across

different motors. Each motor might also have a "micro-
stepping" mode. This makes the motor take smaller steps
to acquire more accuracy. For example, if it takes 200
steps for a complete rotation, a 1/2 stepping mode takes
400 steps for a complete rotation. NEMA-17 has micro-
stepping up to 1/32 steps. This makes it very accurate,
albeit at a loss of speed.

 For the movement to be entirely safe for the
motors and equipment, we need to make sure the nut does
not exceed the limit of the screw. There are stoppers on
both ends of the screw; however, the motor has enough
torque to keep spinning the nut over the screw at the end
and ruin the threads on it. To avoid this, we keep our
initial 0 as the extreme left and the distance from there to
the end of the baseline as the right limit. Keeping these
hard-coded limits prevents the motor from progressing
any further, even if incorrectly commanded to do so.

5. CONCLUSIONS:

The Bot is capable of playing Carrom at a level that is way
above average players. However, to beat professionals at
this game will require better Artificial Intelligence
implementation like the aforementioned Model-Based
Agent. The hardware, like the motors and the weight of the
equipment, can be improved upon drastically with a
higher budget. For example, replacing Aluminum with
Carbon Fiber or getting better and stronger Servo and
Stepper motors to improve on the speed. We could also
use Raspberry Pi plugins to improve the processing power
of it to enable implementation of A.I at a higher level, such
as live video tracking, to eradicate the need of a button and
make it completely autonomous. Adding another axis
horizontally along the side can also let us use a grabber to
grab the striker automatically.

6. ACKNOWLEDGEMENT

We take this opportunity to express our deepest gratitude
for everyone who has made an invaluable contribution
without which the completion of this project would not
have been possible. We would like to thank Ms. Monika
Kanojiya, Ms. Deepshikha Chaturvedi, and also Mr. Shabbir
Painter for their keen interest and meticulous scrutiny and
assisting in solving any problems that arose.

REFERENCES

1. Virendra K. Y., Saumya B. , Anuja K. A. , Rahul P.
(2014). Approach to accurate circle detection:
Circular Hough Transform and Local Maxima
concept. Retrieved from IEEE xplore, website:
https://ieeexplore.ieee.org/document/6892577

2. Luis Barba-Guamán , Carlos Calderon-Cordova ,
Pablo Alejandro Quezada-Sarmiento (2017).

https://ieeexplore.ieee.org/document/6892577

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4192

Detection of moving objects through color
thresholding. Retrieved from IEEE xplore,
website:
https://ieeexplore.ieee.org/document/7975755

3. Yurong Zhong (2016). The analysis of cases based
on decision trees. Retrieved from IEEE xplore,
website:
https://ieeexplore.ieee.org/document/7883035

BIOGRAPHIES:

Adit Doshi is currently
pursuing B.E in
Computer Engineering,
from Shah and anchor
Kutchhi Engineering
College, Mumbai. I have
completed my Diploma
in Computer engineering
from K J Somaiya
polytechnic Vidyavihar,
Mumbai.

Sushrut Ranade is
currently pursuing B.E in
Computer Engineering,
from Shah and anchor
Kutchhi Engineering
College, Mumbai. He has
completed his Diploma
in Computer engineering
from K J Somaiya
polytechnic Vidyavihar,
Mumbai.

Huzefa Painter is
currently pursuing B.E in
Computer Engineering,
from Shah and anchor
Kutchhi Engineering
College, Mumbai. He has
completed his Diploma
in Computer engineering
from Government
Polytechnic Mumbai.

Prof. Monika Kanojiya
is working as an
Assistant Professor in
the Computer
Engineering Department
of SAKEC, Mumbai. She
has done her B.E. in
Information Technology
and M.E in Computer

Science. She has 6 years
of teaching experience
and has guided multiple
projects.

https://ieeexplore.ieee.org/document/7975755
https://ieeexplore.ieee.org/document/7883035

