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Abstract - Artificial intelligence and deep learning 
algorithms are widely used nowadays in almost every 
electronic devices, those algorithms need to be executed as 
quickly as possible in some time critical devices like self- 
driving cars etc. So for executing those Deep Learning 
algorithms, some accelerators are required to accelerate the 
time critical tasks. Most of the current technology uses AXI 
interface for offloading deep learning algorithms on to 
accelerator. In this paper the deep learning models are 
accelerated on GPUs. Intel integrated GPU is used for 
accelerating the various deep learning models using the Intel 
OpenVino software. Image classification models are the 
targeted models for acceleration. The benchmarking results of 
the selected deep learning models run on CPU (Intel i5 4200 
processor) and Intel Integrated GPU present in the laptop are 
compared. All the simulations are carried on Windows Laptop 
using OpenVino software. 
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1. INTRODUCTION  
 
Nowadays Artificial Intelligence and Deep Learning are 
increasingly being used in many devices. These include edge 
devices which need to be energy efficient and don’t have a 
lot of processing power with them unlike the huge servers 
[1]. For such ARM architecture based systems there is need 
of offloading common Artificial Intelligence and Deep 
Learning tasks to hardware such as FPGA and GPUs to obtain 
considerable amount of acceleration on them [2-4]. This 
acceleration of these tasks should happen in some critical 
systems like self-driving cars where it should rapidly detect 
the obstacles in its path and should locate the path where 
obstacles are less [6].  
The growing complexity of software applications running on 
the low power devices like ARM processors call for the 
increase in the processing power. Typically, a RISC 
processors does not provide enough computational 
resources and the use of a specialized hardware or software 
accelerator is inevitable [5]. However in this paper, the 
benchmarking results like throughput, latency of the 
SqueezeNet model run on Intel CPU (Intel i5 4200 
processor) and integrated Intel GPU in the laptop are 
obtained and compared for acceleration. The brief workflow 
of the software being used that is Intel OpenVino used for 
acceleration on GPU is discussed in software details section 

and then methodology obtained and results obtained are 
discussed in further sections. Also in next sub-sections brief 
introduction to convolutional neural networks and the 
various models used for computer vision tasks specially the 
models used for image classification task is given. 
 

1.1 Convolutional Neural Networks and Image 
Classification models 
 

The convolutional neural network (CNN) is a subdivision 
of deep learning neural networks. CNNs has made a major 
breakthrough in image classification and object recognition. 
They are most commonly used for analyzing the visual 
images and are majorly working towards the scenes in image 
classification. They are now found at peak of everything from 
Facebook’s friend suggestion, photo tagging to self driving 
cars. 

 Image classification is the process of taking an input such 
as image of cat or dog and outputting a class or a probability 
that the input is a particular class. This process of image 
classification could be possible with a convolutional neural 
network. CNNs have an input layer, output layer, and hidden 
layers. The hidden layers consists of convolutional layers, 
ReLU layers, pooling layers, and fully connected layers. A CNN 
convolves the learned features with the input data and uses 
2D convolutional layers. This means that this type of network 
is ideal for processing 2D images and also CNNs use very little 
preprocessing.  

A CNN usually works by extracting the features from 
images automatically. By this the manual feature extraction 
can be completely eliminated. The features are not trained 
but they are learned while the network trains on a set of 
images. This makes deep learning models more accurate for 
computer vision tasks. CNNs learn feature detection through 
tens to hundreds of hidden layers. Each layer in CNN 
increments the complexity of the features that are learned 
while training. A CNN starts with an input image and then 
applies many different filters (convolution operation) to it to 
create a feature map and then applies a ReLU function to 
increase non-linearity of a feature map, this is because 
images are highly nonlinear, ReLU function removes negative 
values from an activation map by setting them to zero. And 
then applies pooling layer to each created feature maps in the 
convolution process and levels the pooled images into one 
long vector, and then inputs the vector into a fully connected 
artificial neural network and processes the features through 
the network. The final fully connected layer provides the 
probability of the class that we are looking for. Finally the 
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model trains through forward propagation and back 
propagation for many epochs. This repeats until the well-
defined neural network with trained weights and feature 
detectors occur. 

Some of the image classification models are LeNet, 
AlexNet, GoogleNet, ResNet, SqueezeNet and many more. All 
these models are trained on ImageNet dataset. ImageNet is a 
large visual database designed mostly for use in visual image 
classification and object recognition software research. More 
than 14 million images are hand annotated by the project to 
show that, what objects are pictured and in approximately 
one million of images, the bounding boxes are being 
provided. LeNet is the first image classification model 
developed, it consists of convolutional encoder consisting of 
two convolutional layers and a dense block consisting of 
three fully connected layers. AlexNet came after LeNet with 
some improvements, it is comprised of five convolutional 
layers, then followed by three fully connected layers and has 
a top 5 error rate of 10%. Compared to LeNet, it has more 
filters per layer and stacked convolutional layers and hence 
classification accuracy is increased. GoogleNet model is the 
successor of AlexNet model which has some improvements in 
its accuracy and it made by a team at Google and it also has a 
name Inception V1, which achieved a top 5 error rate lower 
than 7%. The architecture of GoogleNet is 22 layers deep and 
reduced the number of parameters by using batch 
normalization, RMSprop and image distortions compared to 
previous models. GoogleNet has only 4 million parameters, a 
drastic reduction compared to the 60 million parameters of 
AlexNet. Residual Neural Network or ResNet comes after 
GoogleNet which achieved a top 5 error rate of 3.57%. ResNet 
have up to 152 layers. It uses skip connections to jump 
towards certain layers in the process and has heavy batch 
normalization. This smart implementation of the architecture 
of ResNet makes it possible to have 6 times more layers than 
GoogleNet with less complexity and more accuracy.  

In this paper benchmarking results are achieved on 
SqueezeNet model. In the next sub-section the description of 
SqueezeNet model is given.  

 

1.2 SqueezeNet model 
 

SqueezeNet is deep convolutional neural network 
computer vision applications. The main aim for designing the 
SqueezeNet model was to create a more smaller neural 
network compared to other neural networks with same 
accuracy, and with much less parameters that can efficiently 
fit into the computer memory and can easily be transported 
over a computer network. The smaller neural network is 
achieved by replacing 3x3 filters with 1x1 filter, which leads 
to 9X fewer parameters and then decreasing the number of 
input channels to 3x3 filters. With SqueezeNet, there is a 50× 
reduction in model size compared to AlexNet, while meeting 
or exceeding the top 1 and top 5 accuracy of AlexNet. With 
SqueezeNet model it also has a top 5 error rate of less than 
7% and has a less parameters, with more accuracy. 

In the next section the brief description of software being 
used i.e Intel OpenVino is given and how it is used to obtain 
benchmarking results of the pre-trained models. And then 
the methodology to obtain acceleration results on GPU is 
given. 
 
 

2. SOFTWARE DETAILS 
 
The Intel OpenVino software is used in this paper for 
achieving acceleration on Integrated Intel GPU. The 
OpenVINO software is a comprehensive toolkit which is used 
for developing and deploying the vision oriented solutions on 
Intel platforms. The block diagram, shown in the Fig. 1, 
depicts the deployment workflow of the software and the 
project. 
 

 
Fig -1: Workflow of OpenVino software 

 
Description of workflow in steps are given below: 

1. Configuring the Model Optimizer for the specific 
framework. The pre-trained model (.prototxt and 
.caffemodel for example) in some framework is 
given as input to the model optimizer. 

2. By running the Model Optimizer which can produce 
an enhanced Intermediate Representation (IR) of 
the pre-trained model used based on the 
parameters like trained network topology, weights 
and biases values, and other important parameters. 

3. Testing the selected model in the IR format (.xml 
and .bin) using the Inference Engine in the target 
environment with provided Inference Engine 
sample codes. 

4. Integrating the Inference Engine in the application 
to deploy the model in the target device or platform. 

 
 

3. METHODOLOGY OBTAINED 
 
Existing methods of accelerating the deep learning models 
and convolutional neural network models were analyzed [7-
9], where a random forest classifier and binarised neural 
network were accelerated on FPGA, CPU and GPU and 
compared the results obtained.  Acceleration of the task is 
done in Intel Integrated Graphics GPU present in the laptop 
and the performance is compared with the results obtained 
when the model is run on the CPU. Algorithm for running the 
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model on GPU is designed by using the algorithm used for 
running the model on the CPU. First step is to download the 
required model i.e SqueezeNet model using the model 
downloader present in toolkit by running the downloader.py 
python file. Next step is to convert the model to the Inference 
Engine (IR) format. Go to the Model Optimizer directory and 
run the mo.py script with specifying the path to the model, 
model format and output directory to generate the IR files. 
The IR files are generated in mentioned folder after running 
the model optimizer file. This IR file and test dataset are used 
as input for the inference engine code. The benchmarking 
application code takes input as the required model and test 
dataset and provides benchmarking results of the model. Also 
the classification of image inference engine code is run which 
takes test dataset and the model in the form of IR as input.  

The Intel Integrated Graphics is the GPU embedded on same 
die as the processor and shares available system memory, 
which can perform more tasks than CPU present. The results 
obtained by performing according to mentioned methodology 
is given in the next section. 

 

4. RESULTS AND DISCUSSION 
 

The selected model for the acceleration is image 
classification model such as SqueezeNet model as discussed 
in previous sections. Classification of images inference engine 
code is executed with the above model. For that code, the 
inputs are SqueezeNet model in Intermediate Representation 
format and one test image. In this experiment the image of 
car is given as test input. 

The results obtained are of top ten probabilities of classes of 
the dataset with labels. The below screenshot in Fig.2, shows 
the classification results for the SqueezeNet model. 

  

 
Fig -2: Image Classification result of SqueezeNet model 

 
By looking at the results obtained, we can observe that the 

predicted probability of the car label is more compared to 
any other probabilities. And the SqueezeNet model has 
predicted the test image of car properly. 

The results obtained in Fig. 2 is the predicted classification 
result of the test data. The performance of the model is 
obtained by running the benchmarking inference engine code 
by mentioning the CPU as the target device, with the model 
and test image as input. Below screenshot in Fig. 3 gives the 
performance benchmarking results of SqueezeNet model 
which is run on CPU of the laptop. 

 
Fig -3: Performance Benchmark result of SqueezeNet model 
ran on CPU 

 
The acceleration of the model is achieved by modifying the 
code used to run on CPU in order to run it on GPU. By running 
the model on GPU (Intel integrated graphics) present in 
laptop, throughput is improved and latency is decreased that 
means acceleration is achieved. Below figure (Fig. 4) shows 
performance benchmarking results of SqueezeNet models 
which is run on GPU. 
 

 
Fig -4: Performance Benchmark result of SqueezeNet model 
ran on GPU 

 
The above result shows that throughput is increased 
drastically by running the model on GPU compared to 
running it on CPU. And also a latency is decreased 
appreciably. That means delay of execution is reduced in 
GPU and acceleration is achieved. 
 
 

5. CONCLUSIONS 
 
First in the starting section brief description of convolutional 
neural networks, its main layers and how CNN is used in 
image classification models. Also some of the image 

classification models such as LeNet, AlexNet, GoogleNet, 
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ResNet and SqueezeNet are discussed and their 
performances are compared. And then the brief workflow of 
the software being used that is Intel OpenVino used for 
acceleration is discussed. Using this software, the 
acceleration of SqueezeNet model is achieved on GPU (Intel 
integrated graphics). The throughput of SqueezeNet model 
run on CPU (Intel i5 4200 processor) obtained is 124.89 FPS 
and latency is 31.62 ms. And the throughput of accelerated 
SqueezeNet model achieved is 391.06 FPS and the latency is 
5.03 ms. Throughput and latency is improved, that is the 
acceleration of model is achieved. 
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