
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1044

User Privacy and Database Security using Context based Access Control

in Android Devices: A Survey

Charuli Patil1, Prof. Kiran K Joshi2

1M.Tech Student, Dept. of Computer Engineering and IT, VJTI, Mumbai, Maharashtra, India
2Assistant Professor, Dept. of Computer Engineering and IT, VJTI, Mumbai, Maharashtra, India

---***--

Abstract - Existing projects are based on granting and
retrieving permissions to applications. When a user installs an
application it grants permission to it and once granted it can
use it without any limit, unless the user retrieves the
permission manually. This is the reason for security to privacy
issues because a harmless permit can sometimes be harmful in
some cases. Security risks are highly dependent on the current
situation and, while accessing a particular service is safe in
some contexts, while it may violate privacy in another context.
One of the solutions to this contextual control problem is the
level of consent that allows the granting of strong and denied
consent depending on the specific situation. However,
manually adjusting the policies becomes more complex for the
user as there are a number of policies that will need for the
application to run properly. Therefore, we try to propose a
context-based application that can provide flexibility to
provide and recover permissions based on different contexts.
We use the Android platform to demonstrate our work. In this
model, Android applications are assigned contexts, where the
contexts grant or revoke different permissions and permission-
related conditions [1].

Key Words: Android, access control, context based
access control, user privacy, database security, location.

1. INTRODUCTION

 The changing technology in mobile phone has
introduced new smart technology that offers emerging yet
sophisticated capabilities. In addition, smart phones are
increasing the access to devices works with apps such as
GPS, SMS, Wi-Fi etc. As a result, several challenges occur
mainly in security issues. The most important feature is to
limit the performance of users using apps and its services. In
the meantime, the existing security and privacy control
system hosts a built-in and imperfect security model. Most
current applications work with device-level security that is
the basic of each application, especially for installation. A
user installing third-party applications thinks that the
applications will not misuse the device resources. Similarly,
if a user wants to use that program, he or she must grant all
permission requests. This whole or empty decision leads to a
built-in access control industry. In addition, as long as the
user grants the permissions, there is no way to limit or
revoke these permissions based on user activity. For
example, a user may want to limit the amount of SMS sent on

a day for saving a bill using status information such as access
patterns. To address these issues, our model proposes an
access control mechanism managed by the access control
component i.e. Context-Related Role-Based Access Control
(CtRBAC) [2]. Contexts are defined as a set of actions or
obligations associated with a specific function. Policy
restrictions are defined according to the resources, services,
and permissions that are granted to apps.

 The main issue with the latest operating system is
that once permissions are granted to an application, it
always has the right to access the services without taking
prior permissions from the users [1]. Operating systems do
not support a change in application permissions based on
user context. This perspective of application permissions is
very risky in case of mobile applications. The threat arises
when an application acts as a virus and uses device
resources to spy or leak the user’s personal data without
consent. Even when the users are carrying smartphones in
public places, this may expose their data while being
unaware of the harmful acts going on their devices [6].

 Many mobile OSs, including Android, store personal
information and provide application APIs, which can be used
to access system-managed data or to manage its own
database [7]. For Android, it stores data precisely, but the
data may be unintentionally charged with several risks. The
security of content information created by the application
lies with the developer of the app, while the portable OS only
provides some security features such as fragmentation and
access control. Google introduced Full Disk Encryption (FDE)
for Android having versions 3.0 and above it. It provides
confidential encryption and decryption that works for the
file system for all device read / write functions. But, FDE
protects data only when data it is encrypted. When a user
unlocks an Android device, all information on the device is
decrypted and announced. That means, FDE protects data
only on a locked device from offline attacks and not while
being active. Once a device is unlocked, anyone with proper
permissions can access, use and modify all the data in the
database even if FDE is used [8].

1.1 Background

 Mobile applications security focuses on preventing
applications from accessing sensitive data and resources, but

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1045

most of them have no effective means of enforcing those
restrictions. Most of the work till now is focused on
developing policies that apply only to the whole system and
not on different contexts. Basically, a Context-based access
control requires the identification of contexts in a system.
These contexts have policy restrictions.

 Policies are contextual and adjustable by the device
user. The most common contexts defined are location and
time. We have implemented CBAC policies on the Android
operating system. When the user configures the device
policies according to context, the policies will be applied
whenever the user is using the application.

2. LITERATURE SURVEY

2.1 User Privacy

 User grant permissions to applications. But these
permissions granted are harmless at a time but can be
harmful in some cases. Permission to access camera in
normal areas (Home, Public Area etc.) is harmless but in a
military or sensitive area it can be dangerous. These
permission therefore should not be granted in such areas.

 Applications shouldn’t be able to disclose the
location or time of the device to third party sources.
Applications should not allow third party apps to fake a
location. Applications should not generate a fake time and
gain access to certain content that is not allowed. [1]

Android up to marshmallow was like a mess,
basically we had to accept a list of permissions and if we
don't accept all, we won't be able to use the application. After
marshmallow from Android Nougat (v8) onwards we got a
granular control like we can turn off permissions one by one
but the thing is lot of apps are using those permissions and a
lot of users don't understand why it's important to grant
extra permissions that the applications doesn't need. There
is a fast growth in developing apps which are based on
location detection. However, private data gets leaked due to
untrusted location servers [4].

Nowadays it's important that we control our data so
we can maintain the level of privacy we want. In Android we
take privacy very seriously with each release. We’re building
an increasingly privacy centered platform in which, privacy
sensitive decisions must not lie entirely on our users instead
it must be shared between the users and the Android system.
Our goal is to help users understand that they're controlling
their data, we help them make informed choices about the
data they grant access to and whom they share the data
within Android. In Android 11, developers have evolved the
permission system to give our users even more control. They
are now giving users the options to temporarily grant
permission valid for only a single use by an application. The
permission granted when the application is in foreground is

either as a visible activity or as a foreground service. Granted
permissions expire in a short period after the application is
moved to background. [3]

Applications always check whether they hold a
given permission before performing any action that requires
it. This stage should not be cached or persisted to storage as
it can get out of synchronization with system state.
Furthermore applications should fail gracefully and offer an
appropriate subset of their functionality in cases where the
user declines a permission. In our application we must first
obtain a program location permission that is one of Access
Coarse location and Access Fine location [3].

 If we request background location and any other
permission at the same time the system shows error for apps
targeting android 11. Application must clearly explain the
features that require background location by an end context
UI. This UI should explain why a particular feature needs
background location access to the user to permit access. The
user is then directed to the systems setting to complete the
process. But even after an application is granted the
background location permission, users can change their
mind and deny access from the settings UI for the next useful
statistic. The first improvement is to foreground services in
Android 11, we're adding two new foreground service types
for camera and microphone access. We're making these
changes to better protect the sensitive data and to provide
users data more transparently, about how this data is
accessed if our applications is targeted. Any foreground
service that accesses microphone or camera data must
declare this types using the foreground service type manifest
attribute [5].

2.2 Database Security

 When we are trying to build an app, securing data is
really important. The biggest issue is that it doesn't use
Android key store which is a safe way to manage keys and
basically prevent someone from getting access to the data
that we've encrypted. Google has launched Jetpack security,
which basically allows us to easily encrypt user’s data, files,
and shared preferences without having to really understand
the ins and outs of security. If we're building an applications
that runs on a rooted or compromised device, it means the
user is present on this device and the file system is unlocked.
Once the file system is unlocked and even though we have
full disk encryption, the data is now available to an attacker
or someone that's getting the device. Secondly, attacker
might actually have data that we don't want others to see. So
if we have API keys, tokens, things like that to authorize
services, we probably don't want those to get leaked, and if
we probably don't want anyone to get access to that because
technically, they could start pretending to be user, and start
using our quota and getting free things that we have to pay
for [8].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1046

 The first important thing is key management. So if
we have like a car key, house, or apartment key, that's
something we can keep on and kind of secure it. But with
phones or with data, we can't really just physically make
sure that it's safe. If our device is compromised in some or
the other way, and if someone has rooted it, or if we've
actually lost our device and it's been stolen, we don't really
know a way of protecting that key. Even if it's in pocket,
technically if something happened, that key could be used
against us in some or the other way. So we get around this by
using something called as the "Android keystore." It is
hardware backed, that means it runs in a separate memory
space on the device, which means even though our
applications has access to the keys, we actually don't know
what the key material is, so we can't get the key ourselves
[7].

 The Jetpack security, is built so that when we create
a key, it creates sensible defaults so we don't have to
understand all the ins and outs of security. We can also use
features like strong box which is a separate piece of
hardware on the device. That is a separate chip, so there will
be a slight performance implication from using it because it
is a little bit slower technically, but it's also a very safe way
to manage our data. All the operations are going to happen in
this separate memory space, which means that if we encrypt-
decrypt signing, things, key is not leaked into our
application. So if someone is spying on what you're doing in
some way, you're going to be safe. So in Jetpack security, to
get started, out of the box, we provide a master keys class
which basically allows us to create a key and enter a
keystore. And that means the default is using AES (Advanced
Encryption Standard)-256. This is the normal sized key that
we'd use. It's safe and it's well known.

 We use the block mode GCM, and we do no padding.
So if we want to encrypt a small amount of data that is less
than equal to the key size, we don't really need any padding
or blocking modes. One thing that's important here is that a
lot of the attacks and challenges happen with encryption
when we have data that's longer than the key length. So
that's where padding and block modes come in place. Jetpack
security takes advantage of this also. We just need to make
sure we either have a key in the keystore or that it's been
generated safely, and that we have an alias. So there's a
string that's going to be the key to look this up and use later.
If we do want to set more advanced settings, so that we want
to use some sort of key authorization, to actually make sure
that there's a user present, there's other options here.
Currently, we enforce that the key must be 256 bit. We used
GCM and no padding.

 The other options we see below are like, user
authentication, set strong box backed, and user required are
features that are totally optional. We can have a key that is
where the user has to unlock the device using the timed
authentication. So the best way to implement this is by using
biometric prompt. We’re doing time based, so we're not

going to pass a crypto or a signature there. We are just going
to do this, and we have this authentication callback which we
can see up here. If the authentication is successful, then we
can use our key. If it's not, then we can prompt the user with
the error. So once we have the key, then we can do stuff with
it. So the first thing that we can do is use an encrypted file, it
has an API similar to file input stream and file output stream,
but it seamlessly encrypts and decrypts as you go along.

 Other feature of Jetpack security other than files is
encrypting shared preferences. So if we have sensitive data,
like API keys, we can use the out of the box shared
preferences and shared preferences editor interfaces which
allows to basically understand most people well, most
developers already know how shared preferences works,
and this allows us to take advantage of that using keys and
values [9].

 Jetpack security uses a Google open source library
called "Tink." Tink has cross-platform security for a lot of
different mobile platforms, and it's something we use
because it provides a way and a method of ensuring that--
there's a lot of different versions of Android, there's a lot of
different OEMs out there. There's different versions of SSL
that are implemented. Tink does provide a lot more features,
and it does have an Android extension as we mentioned as
well, because we actually use it. One thing to mention is that
something called "queue rotation." So even though that we
have a master key-- and we never explained why it was a
master key-- the reason is because each file or shared
preferences object, or each type of a primitive-- which a
primitive could be an algorithm or something like that--
algorithm key size in Tink. And we create key sets of
everything.

 It create an AES-256 key to encrypt a file, it will
automatically create a shared preferences key set under the
covers. And what this allows us to do is every time we use
Tink for some reason, if you're using it under the covers and
we need to change or rotate a key. Let's say for some reason,
the keys that are saved in shared preferences, we need to
change them, they've been compromised in some way, we
can rotate them which means it'll actually add a new key to
the key set that's for that specific primitive or that specific
file, and allow us to migrate all the files or data that's been
saved into a new key set. So that's something called "queue
rotation." Tink also supports features like message signing,
MACs, hybrid encryption. If we don't know what hybrid
encryption is, it's using both public and-- asymmetric and
symmetric encryption, like an RSA key with an AES key to
encrypt larger sets of data, but also be able to share that by
sharing a public key with another party.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1047

3. PROPOSED SYSTEM

Fig 3.1 Context-aware Android role-based access control
(CA-ARBAC) components

Fig 3.2 Database Architecture

4. CONCLUSION

 We will develop an APS access control application to
protect users' privacy. Our application allows permissions
based on predefined contexts. Our system is a variant of CA-
RBAC designed that will have a set of Android permissions,
which are granted to applications. We will introduce the
building of a secure data structure on Android. Our
architecture will provide data privacy by allowing only the
authorized business to access the associated database. Only
sdbd can access a unique key in TEE and only an authorized
application can request a purchase on sdbd. Therefore, for
such a validation process, only the most patented
applications can access that program.

REFERENCES

[1] B. Shebaro, O. Oluwatimi and E. Bertino, "Context-Based

Access Control Systems for Mobile Devices," in IEEE
Transactions on Dependable and Secure Computing, vol.
12, no. 2, pp. 150-163, 1 March-April 2015.

[2] T. T. Yee and N. Thein, "Leveraging access control
mechanism of Android smartphone using context-
related role-based access control model," The 7th
International Conference on Networked Computing and

Advanced Information Management, Gyeongju, 2011, pp.
54-61.

[3] Saksham Chitkara, Nishad Gothoskar, Suhas Harish,
Jason I. Hong, and Yuvraj Agarwal. 2017. Does this
ApplicationsReally Need My Location? Context-Aware
Privacy Management for Smartphones. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 1, 3, Article
42 (September 2017)

[4] Rohan J. Patil, Prof. K.K. Joshi and Prof. Sowmiya Raksha,
"Analysis On Preserving Location Privacy," International
Journal Of Advance Research In Computer Science And
Software Engineering, vol. 3, no. 3, pp. 562-566, March
2015.

[5] E. Tomur, Department of Computer Engineering, ˙Izmir
Institute of Technology, Urla, ˙Izmir, Turkey. , “CA-
ARBAC: privacy preserving using context-aware role-
based access control on Android permission system” ,
Published online 24 January 2017 in Wiley Online
Library (wileyonlinelibrary.com)

[6] B. Ren, C. Liu, B. Cheng, S. Hong, J. Guo and J. Chen,
"EasyPrivacy: Context-Aware Resource Usage Control
System for Android Platform," in IEEE Access, vol. 6, pp.
44506-44518, 2018, doi:
10.1109/ACCESS.2018.2864992.

[7] Simone Mutti, Enrico Bacis, Stefano Paraboschi, ‘An
SELinux-based Intent manager for Android’, DIGIP —
Universit`a degli Studi di Bergamo, Italy fsimone.mutti,
enrico.bacis, paraboscg @ unibg.it

[8] J. H. Park, S. Yoo, I. S. Kim and D. H. Lee, "Security
Architecture for a Secure Database on Android," in IEEE
Access, vol. 6, pp. 11482-11501, 2018.

[9] L. Hong-Yue, D. Miao-Lei and Y. Wei-Dong, "A Context-
Aware Fine-Grained Access Control Model," 2012
International Conference on Computer Science and
Service System, Nanjing, 2012, pp. 1099-1102.

