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Abstract—Information contains several important context 
and points that it conveys to the readers, however as the 
volume of information grows, understanding the context and 
getting the points becomes a difficult task.  Moreover, it is 
difficult for human beings to manually extract the summary 
of large documents of text without tools. Hence, a system is 
required that condenses such information and eases out the 
effort for the user to understand. In this paper, we propose a 
system that extracts the context information and involving 
entities also at the same time is able to model the topic of the 
input textual matter. This system combines the capabilities of 
both extractive and abstractive based approaches to achieve 
the task and also includes models for topic and entity 
extraction. 
 
Keywords- information, automatic summarization, 
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1. INTRODUCTION  

Text summarization is a process of extracting or collecting 
important information from original text and presents that 
information in the form of summary. In recent years, need 
for summarization can be seen in various purposes and in 
many domains such as news articles summary, email 
summary, short message of news on mobile etc. The 
automatic summarization of text is a well- known task in the 
field of natural language processing (NLP). Topic modeling is 
a type of statistical modeling for discovering the abstract 
“topics” that occur in the text. The Entity Extraction process 
refers to extracting the involved real time entities, objects 
such as (people, places, objects etc.) from the text. 

The Information extraction task is well known task in the 
field of Natural Language Processing (NLP), several 
research advancements have been made and contributed for 
the task. The approaches for text summarization can be 
classified into two categories 

1. Extractive based approaches 

2. Abstractive based approaches 

1.1. Extractive based approaches 

These approaches focuses on presenting the most 
important information out of the source text by statistical 
techniques such as weighting or scoring strategies applied 
to the texts. The approach associates weights to the 
sentences of the texts on the basis of the tokens and using 
these attached weights identifies the important sentences. 
This can be observed in the following figure 1.1.  
 

 

Fig 1.1 Extractive processes for summarization. 

1.2. Abstractive based approaches 
These approaches involve a much deeper learning 
approaches for producing the context-full summaries. 
These approaches make use of Deep learning AI models 
such as Neural Networks for their capabilities of producing 
summaries that are more machine generated than being just 
copied from the source text. Below figure is an example of 
how an abstractive system works. The outputs generated 
from these approaches are more human like and dynamic 
rather than just being copied from the source text. This can 
be observed in the following figure 1.2. 
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Fig 1.2 Abstractive processes for summarization. 

2. APPLICATIONS OF SYSTEM  
 

2.1 Application Areas 
A few not all, application areas where there is a scope for 
summarization and information extraction. 
 

2.1.2 Newsletters 
Many weekly newsletters take the form of an introduction 
followed by a curated selection of relevant articles. 
Summarization would allow organizations to further enrich 
newsletters with a stream of summaries (versus a list of 
links), which can be a particularly convenient format in 
mobile. 

2.1.3. Search marketing and SEO 
When evaluating search queries for SEO, it is critical to have 
a well-rounded understanding of what your competitors are 
talking about in their content. This has become particularly 
important since Google updated its algorithm and shifted 
focus towards topical authority (versus keywords). Multi-
document summarization can be a powerful tool to quickly 
analyze dozens of search results, understand shared themes 
and skim the most important points. 

2.1.4. Internal document workflow 
Large companies are constantly producing internal 
knowledge, which frequently gets stored and under-used in 
databases as unstructured data. These companies should 
embrace tools that let them re-use already existing 
knowledge. Summarization can enable analysts to quickly 
understand everything the company has already done in a 
given subject, and quickly assemble reports that 
incorporate different points of view. 

2.1.5. Legal contract analysis  
Related to point 4 (internal document workflow), more 
specific summarization systems could be developed to 
analyze legal documents. In this case, a summarizer might 
add value by condensing a contract to the riskier clauses, or 

help you compare agreements. 

2.1.6. Social media marketing 
Companies producing long-form content, like whitepapers, 
e-books and blogs, might be able to leverage summarization 
to break down this content and make it sharable on social 
media sites like Twitter or Facebook. This would allow 
companies to further re-use existing content. 

2.1.7. Email overload 
Companies like Slack were born to keep us away from 
constant emailing. Summarization could surface the most 
important content within email and let us skim emails 
faster. 

2.1.8. Science and R&D 
Academic papers typically include a human-made abstract 
that acts as a summary. However, when you are tasked with 
monitoring trends and innovation in a given sector, it can 
become overwhelming to read every abstract. Systems that 
can group papers and further compress abstracts can 
become useful for this task. 

2.1.9. Help desk and customer support 
Knowledge bases have been around for a while, and they 
are critical for SAAS platforms to provide customer support 
at scale. Still, users can sometimes feel overwhelmed when 
browsing help docs. Could multi-document summarization 
provide key points from across help articles and give the 
user a well-rounded understanding of the issue? 

2.1.10. Helping disabled people 
As voice-to-text technology continues to improve, people 
with hearing disabilities could benefit from summarization 
to keep up with content in a more efficient way. 

3. PROPOSED METHODOLOGY 

The existing approaches do provide a solution in generating 
summary to the text documents, but there are few 
limitations when dealing with the approaches.   
 
Extractive: 

 The information extracted is purely copied from the 
original text and hence it does not intend to 
produce the context or any new inferences. 

 The results of these approaches are static in nature 
and lack dynamism. 

Abstractive: 

 These models suffer generating Out of Vocabulary 
terms (OOV) and generate unknown tokens. 

 Also certain models suffer from generating 
repeated tokens in the output. 
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So a system that can use both approaches to generate a 
summary and also to provide a scope for information 
extraction such as text classification and entity 
identifications is required for generating more 
understandable and accurate summary. The combined 
system aggregates to the powers of such techniques which 
can be used in the field of text summarization. 
 

3.1. Proposed System 

The proposed system provides a hybrid architecture of 
summarization that combines the power of dual approaches 
of extractive and the abstractive methodology techniques, 
apart from it, the proposed system combines the task of text 
classification for modeling the source text topic and 
identifying the real time entities and/or objects 
involved/discussed in text. This Hybrid combinational 
approach provides with a much higher and deeper level of 
information to the user that is much simple and leading to 
be more dynamic for inference. Below fig 3.1 is an example 
on how the proposed system works. There are many 
aspects and research regarding automatic document 
summarization and information extraction that, apart from 
their importance, cannot be investigated. Our system work 
is to a wider scope to build a system that enables for 
information condensation, classification and extraction 
through the combined approaches. 

 
Fig 3.1 Example for Proposed System 

 
3.2 Scope 

Extracting data from sources is a standard process in 
systematic review (SR) development. However, the data 
extraction process still relies too much on manual efforts 

which is slow, costly, and subject to human error. In this 
study, we develop summarization system aimed at 
enhancing productivity and reducing errors in the 
traditional data extraction process. Information extraction 
is the process of extracting specific (pre-specified) 
information from textual sources. One of the most trivial 
examples is when your email extracts only the data from 
the message for you to add in your Calendar. Other free-
flowing textual sources from which information extraction 
can distill structured information are legal acts, medical 
records, social media interactions and streams, online news, 
government documents, corporate reports and more. 
Gathering detailed structured data from texts, information 
extraction enables: 

 The automation of tasks such as smart content 
classification, integrated search, management and 
delivery; 

 Data-driven activities such as mining for patterns 
and trends, uncovering hidden relationships, etc. 

Apart from these it has a greater scope and spreads its roots 
across several applications, few of which are discussed 
below. 
 
3.3. Purpose 
 
The demand and scope for natural language processing 
tasks is growing at each passing day. A much deeper and a 
higher level of context, meaning and brief information must 
be presented that is simple, concise, and understandable but 
at the same time it must be highly descriptive and have a 
high level of information. Such information finds its scope 
through various applications from general public, 
information retrieval systems, automation etc. We aim to 
solve this problem by providing a system that is able to 
provide reduced context-full information along with 
descriptive parameters from the text. Our goals are that 

 These summaries will be as important as possible in 
the aspect of the texts intention. 

 Supplying the user a smooth and clear and simple 
interface. 

 Maintaining the descriptiveness of information to 
be presented. 

 Keeping a smooth transition of processes. 
 

4. IMPLEMENTATION 

The implementation consists of 4 phases, which include: 

 Extractive 
 Abstractive 
 Topic  
 Entity 
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All these phases are implemented using the libraries which 
are supported by the Python language. 

 

Fig 4.1: Architecture of the proposed system. 

The Architecture of the proposed system is as shown in the 
following fig 4.1. As seen in the fig the entire system is 
categorized into a set of phases, where in each phase is 
responsible for handling a particular task. The input is text 
document .doc or a plain text file .txt or it could even be a 
web document specified through the URL. Each phase is 
explained into the following subsections. 

4.1 Extractive Method: 

The system uses the NLTK python module for achieving the 
NLP (Natural Language Processing) tasks. The NLTK 
provides tokenization for sentences and words, stop words 
and stemming of words to root forms. The Library also 
provides POS (Parts of Speech) tagger for identification of 
parts of speech in the data. Beautiful Soup module is used 
for HTML parsing. The pyFPDF is used for flushing the 
output to the pdf document. The communication with the 
HTML source document on web is provided by the urllib 
module. It consists of 3 modules  

Pre-process Module: 

This module has the duty of filtering the input data through 
the processes such as removal of stop words, reduction of 
words to root forms, formatting of spaces and unrecognized 
symbols through the pre-process class. Then this module 
consists of the Tokenization class that performs the 
splitting of the data into sentences and words.  

Feature Extraction Module:  

When the input data to an algorithm is too large to be 
processed and it is suspected to be redundant then it can be 
transformed into a reduced set of features (also named a 

feature vector). Determining a subset of the initial features 
is called feature selection. The core module for the 
application is calculating the sentence score and assigning 
the weights to the sentences. This process is done in 
Sentence Scoring class.  

Clustering Module 

K-means clustering is one of the simplest and popular 
unsupervised machine learning algorithms. Typically, 
unsupervised algorithms make inferences from datasets 
using only input vectors without referring to known, or 
labeled, outcomes. This module clusters the weighted 
sentences to form a cluster of major sentences to be chosen 
for the summary. After extractive process is completed, the 
output document is used for generating input-feed data. 

Generation of Input-Feed data 

This is an intermediate phase where after generation of 
reference summary is done through the extractive phase, 
the extracted summary is appended to the original article 
to form a file called a story file. This file consists of the 
original article and the reference summary strings 
separated by a ‘@highlight’ tag. This file is tokenized and 
converted to a binary (.bin) file to be inputted to the 
abstractive phase. The input feed data is generated using 
Stanford core NLP package. In this binary file the article is 
kept under <article> tag and the reference summary is 
kept inn<abstract> tag. An example of the generated story 
file is shown in the following fig 4.2.    

 
Fig 4.2: generated story file 

4.2 Abstractive summarization phase 
 
The generated Input-Feed data is used in the abstractive 
phase. This phase is responsible for handling the 
summarization task based on abstractive approach. This 
approach uses a trained RNN (Recursive Neural Network) 
that generates the summary tokens forming the final 
summary. The RNN consists of encoder and decoder 
sequences which predict the summary tokens. This 
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approach makes use of deep learning i.e. it uses the ‘RNN’, 
the Recursive neural networks called LSTM ‘Long Short 
Term Memory’ networks sequence to sequence. This 
consists of two parts 

 The Encoder 
 The decoder 

 

4.2.1 How it works: 

The Encoder part is responsible for accepting the input 
sequence tokens and for generating hidden states, for 
generating a hidden state it uses previous saved state 
information hence it is called Long short-term memory as it 
saves and uses previous information. Also, in doing so each 
encoder state must remove unwanted information and only 
store required tokens for this it uses internal logical gates 
which throw away unwanted information and keep only the 
valid ones. These Internal gates are 

 Input gate – this gate takes an input sequence 
token and is transformed or scaled to a fixed value. 

 Forget gate - this gate is responsible for deciding 
which information to throw out.  

 Output gate – this gate decides what the next 
hidden state is. 

To transform the input sequences to a scaled value we use 
two functions tanh() that scales between -1 to 1 and 
sigmoid() that scales between 0 to 1. The Decoder works in 
opposite way to encoder, producing the outputs from 
hidden states.  

4.2.2 How Text summarization occurs in LSTM 
sequence to sequence model: 

We use a pointer generator with attention mechanism with 
the basic LSTM model because the basic model suffers from 
producing OOV (Out of vocabulary words) and also fails to 

provide any facts accurately.The tokens of the article Wi are 

fed one-by-one into the encoder (a single-layer bidirectional 
LSTM), producing a sequence of encoder hidden states hi. 
On each step t, the decoder (a single-layer unidirectional 
LSTM) receives the word embedding of the previous word 
(while training, this is the previous word of the reference 
summary; at test time it is the previous word emitted by the 
decoder), and has decoder state st .Next an attention 
mechanism is used to produce the attention distribution of 
the input tokens; the attention distribution can be viewed as 
a probability distribution over the source words, that tells 
the decoder where to look to produce the next word. Next, 
the attention distribution is used to produce a weighted 
sum of the encoder hidden states, known as the context 

vector. The context vector is the added to the decoder states 

to produce the final probability distribution of vocabulary 

Pvocab during the training process. Then in testing process 

this probability distribution is used to predict words.Next 

The generation probability Pgen ∈ [0,1] for timestep t is 

calculated from the context vector, the decoder state s and 
the decoder input x. This Pgen acts as switch which tells 

whether to choose the word from the Pvocab probability 

distribution or to copy the word from the source text itself. 
To prevent repetition coverage mechanism is used where a 
coverage vector is used that is a sum of all attention 
distributions of previous decoder time steps which tells the 
degree of usage a word has received thereby preventing 
using that word again and again. The Entire process is 
depicted in the following fig 4.3. 

 

Fig 4.3: Abstractive Summarization Process 

4.2.3 Data Set for abstractive summarization and 
training model: 

The abstractive phase of the system uses a RNN (Recursive 
Neural Network) based LSTM (Long short term memory) 
network model. This model is trained on the 
‘CNN/Dailymail News article dataset that is procured from 
the open source repository. The CNN/Dailymail dataset 
consists of raw news articles and summaries for about 
50,000 articles. To processes the raw files and tokenize 
them an open source java package is used called 
‘Stanford_core_NLP’. The environment variables are set in 
system and the classpath is configured. The 
Stamfor_core_NLP package is executed onto the directory 
that consists of the raw files. This tokenizes the articles and 
then it is converted into binary files ‘.bin’. Each binary file is 
chunked by chunking about thousand articles and their 
summaries per one binary chunk file. This result into 
creation of binary chunked files used for training the model 
and a Vocabulary file. 
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4.3 Topic classification phase 

In the topic modelling phase of the system, it aims at 
predicting a more generalized topic that describes the 
article and its meaning. For this task SVM (Support Vector 
Machine) classification is used. The SVM classifier is trained 
on a processed dataset of ‘News category’ from the kaggle 
repository. The dataset consists of about 41 topics ranging 
from Crime, Business, and Entertainment etc. In this phase, 
the generated summary of the document is classified to 
predict the generic topic that describes the input document. 
For our system, we selected 41 topics which are categorized 
from 37,000 data sets. The document is classified to a 
particular class of category such as CRIME, 
ENTERTAINMENT, and POLITICS etc. Given a set of training 
examples, each marked as belonging to one or the other of 
two categories, an SVM training algorithm builds a model 
that assigns new examples to one category or the other, 
making it a non-probabilistic binary linear classifier 
(although methods such as Platt scaling exist to use SVM in 
a probabilistic classification setting). 

 

4.3.1 How SVM classification works: 

In this algorithm, we plot each data item as a point in n-
dimensional space (where n is number of features you 
have) with the value of each feature being the value of a 
particular coordinate. Then, we perform classification by 
finding the hyper-plane that differentiate the two classes 
very well an SVM model is a representation of the examples 
as points in space, mapped so that the examples of the 
separate categories are divided by a clear gap that is as wide 
as possible which can be observed in the following figure 
4.4 and figure 4.5 gives an example of hyper-plane. 
 

 

Fig 4.4: Topic Classes (41 Topics) 

 

 

Fig 4.5: Hyper-plane 

4.3.2 Dataset for SVM topic modeling and training: 

The ‘News category dataset’ from Kaggle is used for training 
the classification model. This is a JSON file which consists of 
several news articles with short descriptions, headlines and 
categories. This consists of about 40 topic categories. 
Primarily, the JSON file is downloaded and the file is 
processed to remove all unwanted attributes and keep only 
the two important attributes which are – the short 
description of news and the topic category. 

   After that, a short description is pre-processed to remove 
stop words and lemmatize the words. Then the topic 
categories are assigned an integer id ranging from 0 to 40. 
These attributes are then saved to .CSV file In the next step, 
the topic categories and their ids are saved in a dictionary 
structure and saved locally using the pickle python library. 
Next The SVM classifier is built using the Scikit learn python 
library. The dataset is firstly vectorized using the tfidf 
vectorizer because string data cannot be directly used to 
train the model. The model is trained on Colab and saved 
using the python pickle library.  

  Below figure 4.6 is the example of how raw JSON data file 
is being converted into processed dataset using various 
mentioned pre-processor techniques.  
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Fig 4.6: Processed dataset from Raw JSON data file 

4.4 Entity recognition phase 
 

This phase carries out the task of Named Entity Recognition 
(NER), where the tokenized text is tagged and annotated 
with a particular entity tag such as PEOPLE, PLACE, and 
ORGANIZATION etc. In this phase, the primary task is that it 
first takes the abstract output text, pre-processes the 
text(removing stopwords, root words ) then using the nltk 
library the processed text is tagged that produces the 
nouns, adjective etc. words, These tagged tokens are then 
input to the spacy model that attaches an entity category to 
each token. Then Tokens that represent people, 
organization, location, products, money are chosen as the 
output entities. The tokens tagged with categories of 
Person, GPE (Location), Organization, Products and Money 
is extracted. 

 SpaCy: spaCy is an open-source software library for 
advanced natural language processing, written in 
the programming languages Python and Cython. It 
features convolutional neural network models for 
part-of-speech tagging, dependency parsing and 
named entity recognition, as well as API 
improvements around training and updating 
models, and constructing custom processing 
pipelines. spaCy also supports deep learning 
workflows that allow connecting statistical models 
trained by popular machine learning libraries like 
TensorFlow, Keras, Scikit-learn or PyTorch. spaCy's 
machine learning library, Thinc, is also available as 
a separate open-source Python library. 

 

 Final Output: A final report in a PDF format is 
generated by the user at the final phase which 
describes the summary, classified topic and all the 
real time entities present in the text. pyPDF library 
is used for generating the PDF file. This file can also 
be used to perform TTS (Text to speech) tasks. For 
speech synthesis Pytts library is used to read out 
the final summary of text document 

 

5. INTERFACE 
 
This chapter provides the graphical user interface of the 
developed application and an overview of how this system 
is providing the output. Figure 5.1 depicts the main screen 
of this application following this sample text document 
(figure 5.2) is been considered as input for which the 
summary is being generated shown in the figure 5.3. Topic 
modeling and entity extraction results from the provided 
input are observed in the figure 5.4.  
 

 

Fig 5.1 Main Screen of the Application 

 

 
 

Fig 5.2 A Sample plain text input document (.txt) 
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Fig 5.3 Summary Output For the input document 
shown in fig 5.2 

 

Fig 5.4 Topic and Entity results for input document 
shown in fig 5.3 

6. Results 

6.1 Testing  

The Testing of the project is done and reported by using the 
TestLink platform. Testlink is an open source test management 
framework that provides creation of test cases, test plans and 
also generation of test reports. The project is tested for 
functionality and specifications. The tests are carried out for 
the following cases: (10 Cases) 

 Unreachable URL (URL that cannot be opened 404 
errors). 

 Incomplete document input (providing a file that is 
having missing data and is incomplete.) 

 Wrong file mode (Opening a file in the wrong file 
mode) 

 Wrong file extension(Opening a file other the .txt) 

 Inputting encrypted document. 
 NULL or empty input. 
 Opening files present on different folders and 

directories. 
 Testing on Highly styled websites i.e websites that 

are more advanced in terms of looks and styles. 
 Cancelling while opening a file. 
 Empty text document. 

In all these scenarios, the results obtained from the testing 
were accurate according to the type of input document 
provided and there was no discrepancy shown on the 
results. 

6.2 Observations 
The performance of the system, its various aspects of the 
system have been recorded and analyzed and shown below 
through plots. 

6.2.1 Summarizer Accuracy  
The below figure 6.1 describes the accuracy of the 
summarizer with respect to the no of input lines of text. As 
seen the accuracy increases as the input size increases. It is 
observed that the accuracy increases as the input size 
increases. The greater number of lines or words the higher 
the accuracy of the summary obtained. As the system 
analyses each and every word and predicts what the 
upcoming word might be, if the document has fewer 
number of lines or words then the resultant summary 
obtained might not be accurate or show few discrepancies 
in the output summary. 

 
Fig 6.1: Accuracy w.r.t No of lines of input 

 
The below figure 6.2 implies compression ratio of the 
summarizer which describes the rate of lines to which the 
summarizer reduces the input text. Generating the accurate 
summary is not the only vital task, but the summary must 
have fewer lines so that it would be stress-free for the end-
user. So, we trained the system to provide fewer lines as 
well as generating accurate summary to the end-user.   
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Fig 6.2: Summary Compression Ratio 

 
We have collected different articles from a variety of news 
channels and compared the accuracy of summary 
generation for each that is as shown in the figure 6.3. From 
the given results, CNN news channel provides more 
accurate summary as most of articles were collected from 
CNN news channel 

 

 

 

Fig 6.3: Summary Accuracy of Various News Channels 

 

6.2.2 Topic Classifier Accuracy and Metrics  

The below figure 6.4 is for accuracy of topic modeling in 
which the accuracy of topic classifier is measured with 
increasing the dataset size. The accuracy increases with the 
increase in dataset. For our system we’ve mostly opted for 
37,000 data sets. 

 
Fig 6.4 Topic Classifier Accuracy w.r.t Dataset Size 

 

The below figure 6.5 shows the overall topic distribution in 
the news category dataset. It contains 41 topics which is 
descried by each bar in the graph that shows the no of 
articles for that topic in the dataset. 
 

 
Fig 6.5 Topic – Wise Article distribution in Topic dataset 

 
The last below figure 6.6 shows the accuracy per topic for 
different types of articles where a set of 5 topics are chosen 
and three types of articles sources (News, Reports and 
Wiki) are chosen and accuracy for each is plotted in the 
graph. 

 
Fig 6.6 Accuracy of classifier per topics and article type 
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7. CONCLUSION 
 
The rate of information growth due to the World Wide Web 
has called for a need to develop efficient and accurate 
summarization and information extraction systems. 
Although research on summarization started about 50 years 
ago, there is still a long trail to walk in this field. Over time, 
attention has drifted from summarizing scientific articles to 
news articles, electronic mail messages, advertisements, 
and blogs. Both abstractive and extractive approaches have 
been attempted, depending on the application at hand. 
Usually, abstractive summarization requires heavy 
machinery for language generation and is difficult to 
replicate or extend to broader domains. In contrast, simple 
extraction of sentences has produced satisfactory results in 
large-scale applications. The system achieves a part in 
combining the efforts of both the approaches and at the 
same time appends a higher level of information extraction 
through topic classification and entity identification. The 
system manages to achieve its defined objectives. Although 
a lot of scope still remains to be achieved in this immortal 
field. 
 

8. FUTURE ENHANCEMENTS  

In this section, we mention some of the possible future 
extensions of this research. The rate at which the 
information is growing is tremendous. Hence it is very 
important to build a multilingual summarization system and 
this research could be a stepping stone towards achieving 
that goal provided there is availability of online lexical 
databases in other languages. The work presented by the 
thesis can also be applicable to multi document 
summarization by using minimal extensions. In future work, 
new metrics can be investigated which can be used in 
automatic evaluation environment to measure the overall 
quality such as grammar, readability, prominence and 

relativeness. Research in summarization continues to 
enhance the diversity and information richness, and strive to 
produce coherent and focused answers to users information 
need. 
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