
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2271

Hybrid Approach for Text Summarization with Topic Modelling and Entity

Extraction

Tahir Ahmed Shaik1, A.Vikas2, G.V.N Pradyumna3

1Tahir Ahmed Shaik Student, Dept. of Computer Science and Engineering, Anurag Group of Institutions
Ghatkesar, Hyderabad.

2A. Vikas, Student, Dept. of Computer Science and Engineering, Anurag Group of Institutions
Ghatkesar, Hyderabad.

3G.V.N. Pradyumna, Student, Dept. of Computer Science and Engineering, Anurag Group of Institutions
Ghatkesar, Hyderabad.

---***--

Abstract—Information contains several important context
and points that it conveys to the readers, however as the
volume of information grows, understanding the context and
getting the points becomes a difficult task. Moreover, it is
difficult for human beings to manually extract the summary
of large documents of text without tools. Hence, a system is
required that condenses such information and eases out the
effort for the user to understand. In this paper, we propose a
system that extracts the context information and involving
entities also at the same time is able to model the topic of the
input textual matter. This system combines the capabilities of
both extractive and abstractive based approaches to achieve
the task and also includes models for topic and entity
extraction.

Keywords- information, automatic summarization,
meaningful, shorter-version,

1. INTRODUCTION

Text summarization is a process of extracting or collecting
important information from original text and presents that
information in the form of summary. In recent years, need
for summarization can be seen in various purposes and in
many domains such as news articles summary, email
summary, short message of news on mobile etc. The
automatic summarization of text is a well- known task in the
field of natural language processing (NLP). Topic modeling is
a type of statistical modeling for discovering the abstract
“topics” that occur in the text. The Entity Extraction process
refers to extracting the involved real time entities, objects
such as (people, places, objects etc.) from the text.

The Information extraction task is well known task in the
field of Natural Language Processing (NLP), several
research advancements have been made and contributed for
the task. The approaches for text summarization can be
classified into two categories

1. Extractive based approaches

2. Abstractive based approaches

1.1. Extractive based approaches

These approaches focuses on presenting the most
important information out of the source text by statistical
techniques such as weighting or scoring strategies applied
to the texts. The approach associates weights to the
sentences of the texts on the basis of the tokens and using
these attached weights identifies the important sentences.
This can be observed in the following figure 1.1.

Fig 1.1 Extractive processes for summarization.

1.2. Abstractive based approaches
These approaches involve a much deeper learning
approaches for producing the context-full summaries.
These approaches make use of Deep learning AI models
such as Neural Networks for their capabilities of producing
summaries that are more machine generated than being just
copied from the source text. Below figure is an example of
how an abstractive system works. The outputs generated
from these approaches are more human like and dynamic
rather than just being copied from the source text. This can
be observed in the following figure 1.2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2272

Fig 1.2 Abstractive processes for summarization.

2. APPLICATIONS OF SYSTEM

2.1 Application Areas
A few not all, application areas where there is a scope for
summarization and information extraction.

2.1.2 Newsletters
Many weekly newsletters take the form of an introduction
followed by a curated selection of relevant articles.
Summarization would allow organizations to further enrich
newsletters with a stream of summaries (versus a list of
links), which can be a particularly convenient format in
mobile.

2.1.3. Search marketing and SEO
When evaluating search queries for SEO, it is critical to have
a well-rounded understanding of what your competitors are
talking about in their content. This has become particularly
important since Google updated its algorithm and shifted
focus towards topical authority (versus keywords). Multi-
document summarization can be a powerful tool to quickly
analyze dozens of search results, understand shared themes
and skim the most important points.

2.1.4. Internal document workflow
Large companies are constantly producing internal
knowledge, which frequently gets stored and under-used in
databases as unstructured data. These companies should
embrace tools that let them re-use already existing
knowledge. Summarization can enable analysts to quickly
understand everything the company has already done in a
given subject, and quickly assemble reports that
incorporate different points of view.

2.1.5. Legal contract analysis
Related to point 4 (internal document workflow), more
specific summarization systems could be developed to
analyze legal documents. In this case, a summarizer might
add value by condensing a contract to the riskier clauses, or

help you compare agreements.

2.1.6. Social media marketing
Companies producing long-form content, like whitepapers,
e-books and blogs, might be able to leverage summarization
to break down this content and make it sharable on social
media sites like Twitter or Facebook. This would allow
companies to further re-use existing content.

2.1.7. Email overload
Companies like Slack were born to keep us away from
constant emailing. Summarization could surface the most
important content within email and let us skim emails
faster.

2.1.8. Science and R&D
Academic papers typically include a human-made abstract
that acts as a summary. However, when you are tasked with
monitoring trends and innovation in a given sector, it can
become overwhelming to read every abstract. Systems that
can group papers and further compress abstracts can
become useful for this task.

2.1.9. Help desk and customer support
Knowledge bases have been around for a while, and they
are critical for SAAS platforms to provide customer support
at scale. Still, users can sometimes feel overwhelmed when
browsing help docs. Could multi-document summarization
provide key points from across help articles and give the
user a well-rounded understanding of the issue?

2.1.10. Helping disabled people
As voice-to-text technology continues to improve, people
with hearing disabilities could benefit from summarization
to keep up with content in a more efficient way.

3. PROPOSED METHODOLOGY

The existing approaches do provide a solution in generating
summary to the text documents, but there are few
limitations when dealing with the approaches.

Extractive:

 The information extracted is purely copied from the
original text and hence it does not intend to
produce the context or any new inferences.

 The results of these approaches are static in nature
and lack dynamism.

Abstractive:

 These models suffer generating Out of Vocabulary
terms (OOV) and generate unknown tokens.

 Also certain models suffer from generating
repeated tokens in the output.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2273

So a system that can use both approaches to generate a
summary and also to provide a scope for information
extraction such as text classification and entity
identifications is required for generating more
understandable and accurate summary. The combined
system aggregates to the powers of such techniques which
can be used in the field of text summarization.

3.1. Proposed System

The proposed system provides a hybrid architecture of
summarization that combines the power of dual approaches
of extractive and the abstractive methodology techniques,
apart from it, the proposed system combines the task of text
classification for modeling the source text topic and
identifying the real time entities and/or objects
involved/discussed in text. This Hybrid combinational
approach provides with a much higher and deeper level of
information to the user that is much simple and leading to
be more dynamic for inference. Below fig 3.1 is an example
on how the proposed system works. There are many
aspects and research regarding automatic document
summarization and information extraction that, apart from
their importance, cannot be investigated. Our system work
is to a wider scope to build a system that enables for
information condensation, classification and extraction
through the combined approaches.

Fig 3.1 Example for Proposed System

3.2 Scope

Extracting data from sources is a standard process in
systematic review (SR) development. However, the data
extraction process still relies too much on manual efforts

which is slow, costly, and subject to human error. In this
study, we develop summarization system aimed at
enhancing productivity and reducing errors in the
traditional data extraction process. Information extraction
is the process of extracting specific (pre-specified)
information from textual sources. One of the most trivial
examples is when your email extracts only the data from
the message for you to add in your Calendar. Other free-
flowing textual sources from which information extraction
can distill structured information are legal acts, medical
records, social media interactions and streams, online news,
government documents, corporate reports and more.
Gathering detailed structured data from texts, information
extraction enables:

 The automation of tasks such as smart content
classification, integrated search, management and
delivery;

 Data-driven activities such as mining for patterns
and trends, uncovering hidden relationships, etc.

Apart from these it has a greater scope and spreads its roots
across several applications, few of which are discussed
below.

3.3. Purpose

The demand and scope for natural language processing
tasks is growing at each passing day. A much deeper and a
higher level of context, meaning and brief information must
be presented that is simple, concise, and understandable but
at the same time it must be highly descriptive and have a
high level of information. Such information finds its scope
through various applications from general public,
information retrieval systems, automation etc. We aim to
solve this problem by providing a system that is able to
provide reduced context-full information along with
descriptive parameters from the text. Our goals are that

 These summaries will be as important as possible in
the aspect of the texts intention.

 Supplying the user a smooth and clear and simple
interface.

 Maintaining the descriptiveness of information to
be presented.

 Keeping a smooth transition of processes.

4. IMPLEMENTATION

The implementation consists of 4 phases, which include:

 Extractive
 Abstractive
 Topic
 Entity

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2274

All these phases are implemented using the libraries which
are supported by the Python language.

Fig 4.1: Architecture of the proposed system.

The Architecture of the proposed system is as shown in the
following fig 4.1. As seen in the fig the entire system is
categorized into a set of phases, where in each phase is
responsible for handling a particular task. The input is text
document .doc or a plain text file .txt or it could even be a
web document specified through the URL. Each phase is
explained into the following subsections.

4.1 Extractive Method:

The system uses the NLTK python module for achieving the
NLP (Natural Language Processing) tasks. The NLTK
provides tokenization for sentences and words, stop words
and stemming of words to root forms. The Library also
provides POS (Parts of Speech) tagger for identification of
parts of speech in the data. Beautiful Soup module is used
for HTML parsing. The pyFPDF is used for flushing the
output to the pdf document. The communication with the
HTML source document on web is provided by the urllib
module. It consists of 3 modules

Pre-process Module:

This module has the duty of filtering the input data through
the processes such as removal of stop words, reduction of
words to root forms, formatting of spaces and unrecognized
symbols through the pre-process class. Then this module
consists of the Tokenization class that performs the
splitting of the data into sentences and words.

Feature Extraction Module:

When the input data to an algorithm is too large to be
processed and it is suspected to be redundant then it can be
transformed into a reduced set of features (also named a

feature vector). Determining a subset of the initial features
is called feature selection. The core module for the
application is calculating the sentence score and assigning
the weights to the sentences. This process is done in
Sentence Scoring class.

Clustering Module

K-means clustering is one of the simplest and popular
unsupervised machine learning algorithms. Typically,
unsupervised algorithms make inferences from datasets
using only input vectors without referring to known, or
labeled, outcomes. This module clusters the weighted
sentences to form a cluster of major sentences to be chosen
for the summary. After extractive process is completed, the
output document is used for generating input-feed data.

Generation of Input-Feed data

This is an intermediate phase where after generation of
reference summary is done through the extractive phase,
the extracted summary is appended to the original article
to form a file called a story file. This file consists of the
original article and the reference summary strings
separated by a ‘@highlight’ tag. This file is tokenized and
converted to a binary (.bin) file to be inputted to the
abstractive phase. The input feed data is generated using
Stanford core NLP package. In this binary file the article is
kept under <article> tag and the reference summary is
kept inn<abstract> tag. An example of the generated story
file is shown in the following fig 4.2.

Fig 4.2: generated story file

4.2 Abstractive summarization phase

The generated Input-Feed data is used in the abstractive
phase. This phase is responsible for handling the
summarization task based on abstractive approach. This
approach uses a trained RNN (Recursive Neural Network)
that generates the summary tokens forming the final
summary. The RNN consists of encoder and decoder
sequences which predict the summary tokens. This

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2275

approach makes use of deep learning i.e. it uses the ‘RNN’,
the Recursive neural networks called LSTM ‘Long Short
Term Memory’ networks sequence to sequence. This
consists of two parts

 The Encoder
 The decoder

4.2.1 How it works:

The Encoder part is responsible for accepting the input
sequence tokens and for generating hidden states, for
generating a hidden state it uses previous saved state
information hence it is called Long short-term memory as it
saves and uses previous information. Also, in doing so each
encoder state must remove unwanted information and only
store required tokens for this it uses internal logical gates
which throw away unwanted information and keep only the
valid ones. These Internal gates are

 Input gate – this gate takes an input sequence
token and is transformed or scaled to a fixed value.

 Forget gate - this gate is responsible for deciding
which information to throw out.

 Output gate – this gate decides what the next
hidden state is.

To transform the input sequences to a scaled value we use
two functions tanh() that scales between -1 to 1 and
sigmoid() that scales between 0 to 1. The Decoder works in
opposite way to encoder, producing the outputs from
hidden states.

4.2.2 How Text summarization occurs in LSTM
sequence to sequence model:

We use a pointer generator with attention mechanism with
the basic LSTM model because the basic model suffers from
producing OOV (Out of vocabulary words) and also fails to

provide any facts accurately.The tokens of the article Wi are

fed one-by-one into the encoder (a single-layer bidirectional
LSTM), producing a sequence of encoder hidden states hi.
On each step t, the decoder (a single-layer unidirectional
LSTM) receives the word embedding of the previous word
(while training, this is the previous word of the reference
summary; at test time it is the previous word emitted by the
decoder), and has decoder state st .Next an attention
mechanism is used to produce the attention distribution of
the input tokens; the attention distribution can be viewed as
a probability distribution over the source words, that tells
the decoder where to look to produce the next word. Next,
the attention distribution is used to produce a weighted
sum of the encoder hidden states, known as the context

vector. The context vector is the added to the decoder states

to produce the final probability distribution of vocabulary

Pvocab during the training process. Then in testing process

this probability distribution is used to predict words.Next

The generation probability Pgen ∈ [0,1] for timestep t is

calculated from the context vector, the decoder state s and
the decoder input x. This Pgen acts as switch which tells

whether to choose the word from the Pvocab probability

distribution or to copy the word from the source text itself.
To prevent repetition coverage mechanism is used where a
coverage vector is used that is a sum of all attention
distributions of previous decoder time steps which tells the
degree of usage a word has received thereby preventing
using that word again and again. The Entire process is
depicted in the following fig 4.3.

Fig 4.3: Abstractive Summarization Process

4.2.3 Data Set for abstractive summarization and
training model:

The abstractive phase of the system uses a RNN (Recursive
Neural Network) based LSTM (Long short term memory)
network model. This model is trained on the
‘CNN/Dailymail News article dataset that is procured from
the open source repository. The CNN/Dailymail dataset
consists of raw news articles and summaries for about
50,000 articles. To processes the raw files and tokenize
them an open source java package is used called
‘Stanford_core_NLP’. The environment variables are set in
system and the classpath is configured. The
Stamfor_core_NLP package is executed onto the directory
that consists of the raw files. This tokenizes the articles and
then it is converted into binary files ‘.bin’. Each binary file is
chunked by chunking about thousand articles and their
summaries per one binary chunk file. This result into
creation of binary chunked files used for training the model
and a Vocabulary file.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2276

4.3 Topic classification phase

In the topic modelling phase of the system, it aims at
predicting a more generalized topic that describes the
article and its meaning. For this task SVM (Support Vector
Machine) classification is used. The SVM classifier is trained
on a processed dataset of ‘News category’ from the kaggle
repository. The dataset consists of about 41 topics ranging
from Crime, Business, and Entertainment etc. In this phase,
the generated summary of the document is classified to
predict the generic topic that describes the input document.
For our system, we selected 41 topics which are categorized
from 37,000 data sets. The document is classified to a
particular class of category such as CRIME,
ENTERTAINMENT, and POLITICS etc. Given a set of training
examples, each marked as belonging to one or the other of
two categories, an SVM training algorithm builds a model
that assigns new examples to one category or the other,
making it a non-probabilistic binary linear classifier
(although methods such as Platt scaling exist to use SVM in
a probabilistic classification setting).

4.3.1 How SVM classification works:

In this algorithm, we plot each data item as a point in n-
dimensional space (where n is number of features you
have) with the value of each feature being the value of a
particular coordinate. Then, we perform classification by
finding the hyper-plane that differentiate the two classes
very well an SVM model is a representation of the examples
as points in space, mapped so that the examples of the
separate categories are divided by a clear gap that is as wide
as possible which can be observed in the following figure
4.4 and figure 4.5 gives an example of hyper-plane.

Fig 4.4: Topic Classes (41 Topics)

Fig 4.5: Hyper-plane

4.3.2 Dataset for SVM topic modeling and training:

The ‘News category dataset’ from Kaggle is used for training
the classification model. This is a JSON file which consists of
several news articles with short descriptions, headlines and
categories. This consists of about 40 topic categories.
Primarily, the JSON file is downloaded and the file is
processed to remove all unwanted attributes and keep only
the two important attributes which are – the short
description of news and the topic category.

 After that, a short description is pre-processed to remove
stop words and lemmatize the words. Then the topic
categories are assigned an integer id ranging from 0 to 40.
These attributes are then saved to .CSV file In the next step,
the topic categories and their ids are saved in a dictionary
structure and saved locally using the pickle python library.
Next The SVM classifier is built using the Scikit learn python
library. The dataset is firstly vectorized using the tfidf
vectorizer because string data cannot be directly used to
train the model. The model is trained on Colab and saved
using the python pickle library.

 Below figure 4.6 is the example of how raw JSON data file
is being converted into processed dataset using various
mentioned pre-processor techniques.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2277

Fig 4.6: Processed dataset from Raw JSON data file

4.4 Entity recognition phase

This phase carries out the task of Named Entity Recognition
(NER), where the tokenized text is tagged and annotated
with a particular entity tag such as PEOPLE, PLACE, and
ORGANIZATION etc. In this phase, the primary task is that it
first takes the abstract output text, pre-processes the
text(removing stopwords, root words) then using the nltk
library the processed text is tagged that produces the
nouns, adjective etc. words, These tagged tokens are then
input to the spacy model that attaches an entity category to
each token. Then Tokens that represent people,
organization, location, products, money are chosen as the
output entities. The tokens tagged with categories of
Person, GPE (Location), Organization, Products and Money
is extracted.

 SpaCy: spaCy is an open-source software library for
advanced natural language processing, written in
the programming languages Python and Cython. It
features convolutional neural network models for
part-of-speech tagging, dependency parsing and
named entity recognition, as well as API
improvements around training and updating
models, and constructing custom processing
pipelines. spaCy also supports deep learning
workflows that allow connecting statistical models
trained by popular machine learning libraries like
TensorFlow, Keras, Scikit-learn or PyTorch. spaCy's
machine learning library, Thinc, is also available as
a separate open-source Python library.

 Final Output: A final report in a PDF format is
generated by the user at the final phase which
describes the summary, classified topic and all the
real time entities present in the text. pyPDF library
is used for generating the PDF file. This file can also
be used to perform TTS (Text to speech) tasks. For
speech synthesis Pytts library is used to read out
the final summary of text document

5. INTERFACE

This chapter provides the graphical user interface of the
developed application and an overview of how this system
is providing the output. Figure 5.1 depicts the main screen
of this application following this sample text document
(figure 5.2) is been considered as input for which the
summary is being generated shown in the figure 5.3. Topic
modeling and entity extraction results from the provided
input are observed in the figure 5.4.

Fig 5.1 Main Screen of the Application

Fig 5.2 A Sample plain text input document (.txt)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2278

Fig 5.3 Summary Output For the input document
shown in fig 5.2

Fig 5.4 Topic and Entity results for input document
shown in fig 5.3

6. Results

6.1 Testing

The Testing of the project is done and reported by using the
TestLink platform. Testlink is an open source test management
framework that provides creation of test cases, test plans and
also generation of test reports. The project is tested for
functionality and specifications. The tests are carried out for
the following cases: (10 Cases)

 Unreachable URL (URL that cannot be opened 404
errors).

 Incomplete document input (providing a file that is
having missing data and is incomplete.)

 Wrong file mode (Opening a file in the wrong file
mode)

 Wrong file extension(Opening a file other the .txt)

 Inputting encrypted document.
 NULL or empty input.
 Opening files present on different folders and

directories.
 Testing on Highly styled websites i.e websites that

are more advanced in terms of looks and styles.
 Cancelling while opening a file.
 Empty text document.

In all these scenarios, the results obtained from the testing
were accurate according to the type of input document
provided and there was no discrepancy shown on the
results.

6.2 Observations
The performance of the system, its various aspects of the
system have been recorded and analyzed and shown below
through plots.

6.2.1 Summarizer Accuracy
The below figure 6.1 describes the accuracy of the
summarizer with respect to the no of input lines of text. As
seen the accuracy increases as the input size increases. It is
observed that the accuracy increases as the input size
increases. The greater number of lines or words the higher
the accuracy of the summary obtained. As the system
analyses each and every word and predicts what the
upcoming word might be, if the document has fewer
number of lines or words then the resultant summary
obtained might not be accurate or show few discrepancies
in the output summary.

Fig 6.1: Accuracy w.r.t No of lines of input

The below figure 6.2 implies compression ratio of the
summarizer which describes the rate of lines to which the
summarizer reduces the input text. Generating the accurate
summary is not the only vital task, but the summary must
have fewer lines so that it would be stress-free for the end-
user. So, we trained the system to provide fewer lines as
well as generating accurate summary to the end-user.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2279

Fig 6.2: Summary Compression Ratio

We have collected different articles from a variety of news
channels and compared the accuracy of summary
generation for each that is as shown in the figure 6.3. From
the given results, CNN news channel provides more
accurate summary as most of articles were collected from
CNN news channel

Fig 6.3: Summary Accuracy of Various News Channels

6.2.2 Topic Classifier Accuracy and Metrics

The below figure 6.4 is for accuracy of topic modeling in
which the accuracy of topic classifier is measured with
increasing the dataset size. The accuracy increases with the
increase in dataset. For our system we’ve mostly opted for
37,000 data sets.

Fig 6.4 Topic Classifier Accuracy w.r.t Dataset Size

The below figure 6.5 shows the overall topic distribution in
the news category dataset. It contains 41 topics which is
descried by each bar in the graph that shows the no of
articles for that topic in the dataset.

Fig 6.5 Topic – Wise Article distribution in Topic dataset

The last below figure 6.6 shows the accuracy per topic for
different types of articles where a set of 5 topics are chosen
and three types of articles sources (News, Reports and
Wiki) are chosen and accuracy for each is plotted in the
graph.

Fig 6.6 Accuracy of classifier per topics and article type

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2280

7. CONCLUSION

The rate of information growth due to the World Wide Web
has called for a need to develop efficient and accurate
summarization and information extraction systems.
Although research on summarization started about 50 years
ago, there is still a long trail to walk in this field. Over time,
attention has drifted from summarizing scientific articles to
news articles, electronic mail messages, advertisements,
and blogs. Both abstractive and extractive approaches have
been attempted, depending on the application at hand.
Usually, abstractive summarization requires heavy
machinery for language generation and is difficult to
replicate or extend to broader domains. In contrast, simple
extraction of sentences has produced satisfactory results in
large-scale applications. The system achieves a part in
combining the efforts of both the approaches and at the
same time appends a higher level of information extraction
through topic classification and entity identification. The
system manages to achieve its defined objectives. Although
a lot of scope still remains to be achieved in this immortal
field.

8. FUTURE ENHANCEMENTS

In this section, we mention some of the possible future
extensions of this research. The rate at which the
information is growing is tremendous. Hence it is very
important to build a multilingual summarization system and
this research could be a stepping stone towards achieving
that goal provided there is availability of online lexical
databases in other languages. The work presented by the
thesis can also be applicable to multi document
summarization by using minimal extensions. In future work,
new metrics can be investigated which can be used in
automatic evaluation environment to measure the overall
quality such as grammar, readability, prominence and

relativeness. Research in summarization continues to
enhance the diversity and information richness, and strive to
produce coherent and focused answers to users information
need.

9. References

[1] J. N. Madhuri and R. Ganesh Kumar, "Extractive Text
Summarization Using Sentence Ranking," 2019
International Conference on Data Science and
Communication (IconDSC), Bangalore, India, 2019,
pp. 1-3.

[2] Abigail See, Peter J. Liu, Christopher D. Manning
(2017), Get to the point: Summarization with pointer
generator networks, doi.org/10.18653/v1/P17-
1099,55th meeting of the Association for
Computational Linguistics, 1073-1083.

[3] Freek Boutkan, Jorn Ranzijn, David Rau, Eelco van der
Wel (2019), Point-less: More Abstractive
Summarization with Pointer-Generator Networks,
arXiv:1905.01975v1[cs.CL].

[4] Soumick Chatterjee, Pramod George Jose , Debabrata
Datta (2019), Text Classification Using SVM Enhanced
by Multithreading and CUDA, I.J. Modern Education
and Computer Science, 2019, 1, 11-23.

[5] A.Anantharaman, A. Jadiya, C. T. S. Siri, B. N. Adikar
and B. Mohan, "Performance Evaluation of Topic
Modeling Algorithms for Text Classification," 2019
3rd International Conference on Trends in
Electronics and Informatics (ICOEI), Tirunelveli,
India, 2019, pp. 704-708.

