

# Identify Risk Areas, Schedule Modelling, Cost Analyzing - A Case Study for Incineration Plant @ Pune City

# Aditya Dipak Dhanbhar<sup>1</sup>, Dr. Navnath V. Khadake<sup>2</sup>

<sup>1</sup>M.E. Civil Student, Imperial College of Engineering and Research, Wagholi, Pune, Maharashtra <sup>2</sup>Ph.D. (Civil), M.B.A. (Project Management), FIE, FIV, FICA, MISH, Head of Civil Engineering Department, Imperial College of Engineering and Research, Wagholi, Pune, Maharashtra

\*\*\*

**ABSTRACT** - Pune is 8<sup>th</sup> largest city in India and 2<sup>nd</sup> largest city in state of Maharashtra. City is home of many Automobile and Software industries. It is one of the fastest growing cities in Asian-Pacific region. City is experiencing great population growth rate in current decade. It is expected that population of the city hits nearly 8.5M by 2041. This results to tremendous amount of generation of Municipal Solid Waste. Such huge amount of MSW, nearly hundreds of tons generated every day also generates many issues for transportation, treatment and its disposal. Hence, to deal with this huge amount of waste, it is need of time to adopt new eco-friendly and economical solid waste management systems over conventional systems for city. Incineration method is one of the effective methods for solid waste management and implemented by many countries across the world.

This research includes cost analysis, planning and scheduling of incineration plant for Pune city to minimize Solid waste problem for sustainable development. Also, this research extent to identify and quantify the area risk during construction of the plant. This study utilized the Program Evaluation and Review Technique/Critical Path Method (PERT/CPM) and Monte Carlo simulations for estimating the appropriate construction duration at the planning stage of an Incineration plant project. There was found an 85% likelihood of construction duration to be between 896 and 1096 days. From interviews with subject matter experts, the most significant risk factors were found to be labor strikes and construction safety incidents.

#### (Keywords: Incineration Plant, Planning and scheduling, PERT/CPM, Monte Carlo Simulation, Risk Assessment)

# 1. INTRODUCTION

Pune is 8<sup>th</sup> largest city in India and 2<sup>nd</sup> largest city in state of Maharashtra. City is home of many Automobile and Software industries. It is one of the fastest growing cities in Asian-Pacific region. City is experiencing great population growth rate in current decade. It is expected that population of the city hits nearly 8.5M by 2041. This results to tremendous amount of generation of Municipal Solid Waste. Such huge amount of MSW, nearly hundreds of tons generated every day also generates many issues for transportation, treatment and its disposal. But these problems have also provided a window of opportunity for cities to find solutions - involving the community and the private sector; involving innovative technologies and disposal methods; and involving behaviour changes and awareness raising for treatment of waste.

Today average MSW generation for Pune City is around 0.34 (kg/capita/day) and expected to increase up to 0.70 (kg/capita/day). Hence, to deal with this huge amount of waste, it is need of time to adopt new eco-friendly and economical solid waste management systems over conventional systems for city. Incineration method is one of the effective methods for solid waste management and implemented by many countries across the world.

This research includes cost analysis, planning and scheduling of incineration plant for Pune city to minimize Solid waste problem for sustainable development. Also, this research extent to identify and quantify the area risk during construction of the plant.

#### **1.1 Objectives of study:**

- **1.** To carry out cost analysis for Incineration method as effective solid waste management method
- **2.** To develop a schedule model to estimate typical construction duration using Critical Path Method and Program Evaluation Review Technique
- **3.** To showcase the minimum and maximum duration required for construction of incineration plant using Monte Carlo simulation and MS- Project
- **4.** To identify and quantify the areas of risk during the procurement of construction of the plant.

#### **1.2 Introduction to Incineration Process:**

Incineration is the waste treatment process the combustion of organic substances contained in waste materials. Incineration and other high-temperature waste treatment systems are described as "thermal treatment". Incineration of waste materials converts the waste into ash, flue gas and heat. The ash is mostly formed by the inorganic constituents of the waste, and may take the form of solid lumps or particulates carried by the flue gas. The flue gases must be cleaned of gaseous and particulate pollutants before they are dispersed into the atmosphere. In some cases, the heat generated by incineration can be used to generate electric power.

#### **1.3 Block Estimate of Proposed Plant**

The Cost estimates for the proposed Incineration plant includes:

- Capital investment for Pre-processing unit
- MSW Processing Plant
- Pollution Control Equipment,
- Continuous Emission Monitoring System
- Information Communication Technology
- Auxiliary Power Supply System and
- Allied Infrastructure.

| Component          | Description                                                                                                                                                                                                                                                                                         | Cost (Rs. Crores) |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Component-A        | 1: Site & Peripheral Preparation<br>including2. Site Survey3.GeotechnicalInvestigation,4.WastePhysico-chemical<br>CharacterizationCharacterizationStudy5.SiteClearance, Excavation, Filling &<br>Compaction 6. Compound Wall 7.Pipeline & Pumping Station8.Preparation9.Landscaping10.10.StormStorm | 146.95            |
| Component-B        | Design including all approvals                                                                                                                                                                                                                                                                      | 28.64             |
| Component-C        | Pre-Processing Plant                                                                                                                                                                                                                                                                                | 138               |
| Component-D        | Processing Plant (Electric Power<br>Plant) including Civil, Electrical,<br>Mechanical, I&C, Water System,<br>Construction, Supervision,<br>Pollution Control Equipments, etc.                                                                                                                       | 469.09            |
| Component-F        | Power Evacuation Line                                                                                                                                                                                                                                                                               | 21.17             |
| Component-G        | Process by-product Management<br>and Disposal (Ash/ Sludge/<br>Rejects/ other) Plant                                                                                                                                                                                                                | 4.99              |
| Component-H        | Tests on Completion and Training                                                                                                                                                                                                                                                                    | 9.38              |
| Component-I        | Provisional Sums – General                                                                                                                                                                                                                                                                          | 5                 |
| Total (Rs. Crores) |                                                                                                                                                                                                                                                                                                     | 877.76            |

#### Table 1.3.1 Block estimation of Incineration plant

# **1.4 Economics of the Plant**

Incineration plant needs large investment. Therefore, cost and economics of plant plays important role. Availability of MSW, investment of plant, revenue generated through energy and payback period of investment are important element in economics of project. Some assumptions are required to proceed.

Those are given below: -

- 1) The MSW generated is 3000 MT/day
- 2) The incinerable matter present in the MSW generated is 89.6% i.e. 2688 MT/day.
- 3) Additive material coal is used as 20% of MSW
- 4) Collection efficiency of MSW is 100%
- 5) Electricity generated through incineration plant is provided for only industries at the rate of Rs10/unit.

| Sr. No. | Description                | Unit          |  |  |  |  |
|---------|----------------------------|---------------|--|--|--|--|
| 1       | Capacity                   | 981120 T/Y    |  |  |  |  |
|         | Output                     |               |  |  |  |  |
| 2       | Bottom Ash                 | 295693.8 T/Y  |  |  |  |  |
|         | APC Residue                | 41397.132 T/Y |  |  |  |  |
|         | Electricity for Sale       | 36500 MW/h    |  |  |  |  |
| 3       | Investment                 |               |  |  |  |  |
| 4       | Annual Capital Cost        | 877.76 Cr     |  |  |  |  |
| 5       | Annual Revenue Energy Sale | 5 Cr          |  |  |  |  |

Table 1.4.1 Economics of the plant

# 2. Planning and scheduling of the plant

#### 2.1 Research Methodology

For this study, the development of the schedule and related risk factors included the following research steps:

**Step 1** – First step of the research is to identify high risk block of activities that will cover entire construction process of the incineration plant. Selected activities are from literature survey for similar construction. These blocks of activities can be further used for planning and scheduling purpose.



| Sr. No. | Activities                                 |  |  |  |  |  |
|---------|--------------------------------------------|--|--|--|--|--|
| 1       | Boiler excavating to foundations           |  |  |  |  |  |
| 2       | Foundations and concrete work              |  |  |  |  |  |
| 3       | Boiler main steel                          |  |  |  |  |  |
| 4       | Miscellaneous steel and finish             |  |  |  |  |  |
| 5       | Boiler pressure parts installation         |  |  |  |  |  |
| 6       | Turbine building excavating to foundations |  |  |  |  |  |
| 7       | Discharge tunnel and foundation concrete   |  |  |  |  |  |
| 8       | Main steel frame installation              |  |  |  |  |  |
| 9       | Crane installation and testing             |  |  |  |  |  |
| 10      | T/G base mat concrete                      |  |  |  |  |  |
| 11      | Pedestal and deck concrete                 |  |  |  |  |  |
| 12      | Bench mark and chipping                    |  |  |  |  |  |
| 13      | Sole Plate                                 |  |  |  |  |  |
| 14      | Turbine generator installation             |  |  |  |  |  |
| 15      | Electrical System                          |  |  |  |  |  |
| 16      | Chemical cleaning and cold clean up        |  |  |  |  |  |
| 17      | Steam blow-out                             |  |  |  |  |  |
| 18      | Boiler and auxiliary system test           |  |  |  |  |  |
| 19      | Firing test                                |  |  |  |  |  |
| 20      | T/G and auxiliary system test              |  |  |  |  |  |
| 21      | Trial Operation                            |  |  |  |  |  |

| Table 2.1.1  | Selection ( | of hiah-level | proiect activities. |
|--------------|-------------|---------------|---------------------|
| I GOIC MILII | beneethon . | oj mgn tovot  |                     |

**Step 2** - Define three points of activity durations: From the project case studies, the most likely durations are taken.

**Optimistic Duration:** Optimistic duration is the shortest expected duration to complete the task.

**Most Likely Duration:** Most Likely Duration is the duration which the task can be completed considering the availability of the given resources, its productivity, and realistic resources. **Pessimistic Duration:** Pessimistic Duration is the expected longest duration within which the task can be completed. This process is as dictated by the PERT estimation method.

**Step 3** - Using the three points of activity duration identified above, expected duration is calculated using following equation,

$$t_e = \frac{t_o + 4t_m + t_p}{6}$$

Where,

IRIET

 $t_e$  is expected activity durations (in days)

 $t_o$  optimistic activity duration (in days)

 $t_m$  most likely activity duration (in days)

 $t_p$  the pessimistic activity duration (in days).

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Volume: 07 Issue: 07 | July 2020

IRIET

www.irjet.net

| Sr. No. | Activities                                 | to  | tm  | tp  | te  |
|---------|--------------------------------------------|-----|-----|-----|-----|
| 1       | Boiler excavating to foundations           | 108 | 119 | 130 | 120 |
| 2       | Foundations and concrete work              | 75  | 91  | 105 | 90  |
| 3       | Boiler main steel                          | 113 | 135 | 150 | 135 |
| 4       | Miscellaneous steel and finish             | 320 | 328 | 350 | 330 |
| 5       | Boiler pressure parts installation         | 215 | 237 | 260 | 240 |
| 6       | Turbine building excavating to foundations | 100 | 120 | 138 | 120 |
| 7       | Discharge tunnel and foundation concrete   | 151 | 164 | 185 | 165 |
| 8       | Main steel frame installation              | 108 | 118 | 137 | 120 |
| 9       | 9 Crane installation and testing           |     | 43  | 56  | 45  |
| 10      | 10 T/G base mat concrete                   |     | 59  | 71  | 60  |
| 11      | Pedestal and deck concrete                 | 155 | 161 | 190 | 165 |
| 12      | Bench mark and chipping                    | 18  | 30  | 42  | 30  |
| 13      | Sole Plate                                 | 10  | 12  | 20  | 13  |
| 14      | Turbine generator installation             | 255 | 268 | 290 | 270 |
| 15      | Electrical System                          | 12  | 13  | 18  | 14  |
| 16      | Chemical cleaning and cold clean up        | 10  | 14  | 22  | 15  |
| 17      | Steam blow-out                             | 15  | 18  | 22  | 18  |
| 18      | 18 Boiler and auxiliary system test        |     | 118 | 125 | 119 |
| 19      | 19 Firing test                             |     | 31  | 37  | 32  |
| 20      | T/G and auxiliary system test              | 25  | 29  | 30  | 29  |
| 21      | Trial Operation                            | 200 | 210 | 232 | 211 |

# Table 2.1.2 Calculation Expected time schedule of the plant

**Step 4** – Critical Path is Identifies using **MS – Project**: From the above three-point activity durations expected activity durations and in using MS Project scheduling software, the critical activities were identified.



© 2020, IRJET

L

International Research Journal of Engineering and Technology (IRJET)

Volume: 07 Issue: 07 | July 2020

IRJET

www.irjet.net



Fig. 2.1.1 Schedule for Incineration plant using MS-Project

**Step 5** - Calculate Standard deviation using: The formula used in the PMBOK for standard deviation is simple. It's just pessimistic activity estimate minus the optimistic activity estimate divided by six. The problem is that this in no way shape or form produces a measure of standard deviation.

$$\sigma = \frac{t_p - t_o}{6}$$

|         |                                            |     |     |     |     | Std. |       |
|---------|--------------------------------------------|-----|-----|-----|-----|------|-------|
| Sr. No. | Activities                                 | to  | tm  | tp  | te  | Dev. | (σ²)  |
|         |                                            |     |     |     |     | (σ)  |       |
| 1       | Boiler excavating to foundations           | 108 | 119 | 130 | 120 | 3.67 | 13.44 |
| 2       | Foundations and concrete work              | 75  | 91  | 105 | 90  | 5    | 25    |
| 3       | Boiler main steel                          | 113 | 135 | 150 | 135 | 6.17 | 38.03 |
| 4       | Miscellaneous steel and finish             | 320 | 328 | 350 | 330 | 5    | 25    |
| 5       | Boiler pressure parts installation         | 215 | 237 | 260 | 240 | 7.5  | 56.25 |
| 6       | Turbine building excavating to foundations | 100 | 120 | 138 | 120 | 6.33 | 40.11 |
| 7       | Discharge tunnel and foundation concrete   | 151 | 164 | 185 | 165 | 5.67 | 32.11 |
| 8       | Main steel frame installation              | 108 | 118 | 137 | 120 | 4.83 | 23.36 |
| 9       | Crane installation and testing             | 40  | 43  | 56  | 45  | 2.67 | 7.11  |
| 10      | T/G base mat concrete                      | 52  | 59  | 71  | 60  | 3.17 | 10.03 |
| 11      | Pedestal and deck concrete                 | 155 | 161 | 190 | 165 | 5.83 | 34.03 |
| 12      | Bench mark and chipping                    | 18  | 30  | 42  | 30  | 4    | 16    |
| 13      | Sole Plate                                 | 10  | 12  | 20  | 13  | 1.67 | 2.78  |
| 14      | Turbine generator installation             | 255 | 268 | 290 | 270 | 5.83 | 34.03 |
| 15      | Electrical System                          | 12  | 13  | 18  | 14  | 1    | 1     |
| 16      | Chemical cleaning and cold clean up        | 10  | 14  | 22  | 15  | 2    | 4     |
| 17      | Steam blow-out                             | 15  | 18  | 22  | 18  | 1.17 | 1.36  |
| 18      | Boiler and auxiliary system test           | 115 | 118 | 125 | 119 | 1.67 | 2.78  |
| 19      | Firing test                                | 28  | 31  | 37  | 32  | 1.5  | 2.25  |
| 20      | T/G and auxiliary system test              | 25  | 29  | 30  | 29  | 0.83 | 0.69  |
| 21      | Trial Operation                            | 200 | 210 | 232 | 211 | 5.33 | 28.44 |

| Tahle 2 1 3 | Table 4.2  | Calculation | for Standard | Deviation |
|-------------|------------|-------------|--------------|-----------|
| Tuble 2.1.5 | 1 ubie 4.2 | culculation | joi stanuuru | Deviation |

**Step 6** - To estimate the schedule using the PERT/CPM method, it is necessary to calculate the critical path. The critical path is the activities which constitute the longest work path for project completion. The activity relations were based on survey responses. The activities & their relations were input into MS Project software, using the most likely durations.MS Project output and critical path activities (bar chart durations shown in red)

| Sr.<br>No. | Activities                         | to  | tm  | tp  | te  | Std.<br>Dev.<br>(σ) | ( <b>σ²</b> ) |
|------------|------------------------------------|-----|-----|-----|-----|---------------------|---------------|
| 1          | Boiler excavating to foundations   | 108 | 119 | 130 | 120 | 3.67                | 13.44         |
| 2          | Foundations and concrete work      | 75  | 91  | 105 | 90  | 5.00                | 25.00         |
| 3          | Boiler main steel                  | 113 | 135 | 150 | 135 | 6.17                | 38.03         |
| 5          | Boiler pressure parts installation | 215 | 237 | 260 | 240 | 7.50                | 56.25         |
| 18         | Boiler and auxiliary system test   | 115 | 118 | 125 | 119 | 1.67                | 2.78          |
| 19         | Firing test                        | 28  | 31  | 37  | 32  | 1.50                | 2.25          |
| 20         | T/G and auxiliary system test      | 25  | 29  | 30  | 29  | 0.83                | 0.69          |
| 21         | Trial Operation                    | 200 | 210 | 232 | 211 | 5.33                | 28.44         |
|            |                                    |     |     |     | 990 | 31.67               |               |

# Table 2.1.4 Calculation for Standard Deviation for Critical Activities

**Step 7** - Using the @Risk Monte Carlo software (Microsoft Excel 2016), simulated 1000 projects based on the software's value at risk assessment. depicts the results of this simulation and depicts the minimum project duration of 895.48 days, maximum 1095.58 months, and average 991 days. However, with this type of analysis, often the project duration range that is 85% likely is of interest.it is seen that that the shortest project is about 896 days, and the longest process is about 1096 days.

|       | <b>ئ</b> ە .     | e                         |                |                        |         |          |         |           |                           |          |            | table - Ex | cel                     |                            |                |       |                |   | Adi       | tya Dhanbhar | <u> </u>                      | n –                          |                                    | ×    |
|-------|------------------|---------------------------|----------------|------------------------|---------|----------|---------|-----------|---------------------------|----------|------------|------------|-------------------------|----------------------------|----------------|-------|----------------|---|-----------|--------------|-------------------------------|------------------------------|------------------------------------|------|
| File  | Но               | me Insert                 | Page La        | iyout Form             | nulas D | ata Revi | ew View | Help      | V Tell me v               | vhat you | want to do |            |                         |                            |                |       |                |   |           |              |                               |                              | A, SI                              | hare |
| Paste | Cur<br>Co<br>For | t<br>py -<br>rmat Painter | Calibri<br>B I | ∨ 11<br><u>u</u> •   ⊞ | × A     |          |         | dis anti- | Wrap Text<br>Merge & Cent | ter -    | General    |            | Condition<br>Formatting | al Format a<br>g = Table = | Normal<br>Good | (A.S. | Bad<br>Neutral |   | Insert De | elete Format | ∑ Auto<br>↓ Fill -<br>♦ Clear | Sum × A<br>Z<br>Sor<br>Filte | T P<br>t & Find &<br>er * Select * |      |
|       | capoou           |                           |                | £                      |         |          |         | Pagament  |                           |          | Humb       |            |                         |                            | 54             |       |                |   |           | 410          |                               | coning                       |                                    |      |
| N21   |                  |                           |                | Jx                     |         |          |         |           |                           |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 4     | A                | В                         | с              | D                      | E       | F        | G       | н         | 1                         | J        | K          | L          | M                       | N                          | 0              | Р     | Q              | R | S         | T            | U                             | V                            | W                                  | 1    |
| 2     |                  |                           | expected       | 990                    |         |          |         |           |                           |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 3     |                  |                           | std dev        | 31.67                  |         |          |         |           |                           |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 4     |                  |                           |                |                        |         |          |         |           |                           |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 5     |                  |                           |                | 978.2028               |         |          |         |           |                           |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 6     |                  |                           |                |                        |         |          |         | trial     | duration                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 7     |                  |                           |                |                        |         |          |         | 1         | 978.2028                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 8     | mean             | 990.4669                  |                |                        |         |          |         | 2         | 1012.894                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 9     | sd               | 31.64024                  |                |                        |         |          |         | 3         | 997.4214                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 11    | min              | 1005 579                  |                |                        |         |          |         | 4         | 1036.876                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 12    | value            | 1000                      |                |                        |         |          |         | 6         | 1065 944                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 13    | Value            | 1000                      |                |                        |         |          |         | 7         | 966.8945                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 14    |                  |                           |                |                        |         |          |         | 8         | 946.8331                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 15    |                  |                           |                |                        |         |          |         | 9         | 963.649                   |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 16    |                  |                           |                |                        |         |          |         | 10        | 1014.296                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 17    |                  |                           |                |                        |         |          |         | 11        | 985.6521                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 18    |                  |                           |                |                        |         |          |         | 12        | 964.1929                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 19    |                  |                           |                |                        |         |          |         | 13        | 997.2462                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 20    | 0                |                           |                |                        |         |          |         | 14        | 958.7325                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 21    |                  |                           |                |                        |         |          |         | 15        | 961.8716                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 22    |                  |                           |                |                        |         |          |         | 16        | 1016.257                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 23    |                  |                           |                |                        |         |          |         | 1/        | 997.8155                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 24    |                  |                           |                |                        |         |          |         | 18        | 995.0148                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 26    |                  |                           |                |                        |         |          |         | 20        | 067 2529                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 27    |                  |                           |                |                        |         |          |         | 20        | 959 5102                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 28    |                  |                           |                |                        |         |          |         | 22        | 1029.296                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 29    |                  |                           |                |                        |         |          |         | 23        | 1027.144                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 30    |                  |                           |                |                        |         |          |         | 24        | 987.5458                  |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    |      |
| 31    |                  |                           |                |                        |         |          |         | 25        | 992.656                   |          |            |            |                         |                            |                |       |                |   |           |              |                               |                              |                                    | -    |
|       |                  | Sheet1                    | Sheet2         | Sheet3                 | Sheet4  | (+)      |         |           |                           |          |            |            |                         |                            | 4              |       |                |   |           |              |                               |                              | _                                  | Þ    |
|       |                  |                           |                |                        |         |          |         |           |                           |          |            |            |                         |                            |                |       |                |   |           |              | - E                           |                              | +                                  | 100% |

Fig. 2.1.3 Performing Monte-Carlo Simulation

# 2.2 Risk in Construction of Incineration Plant

Risk management has become an essential requirement for construction projects. Risk management process includes Hazard identification, Risk assessment and Risk control. Risk is assessed by Qualitative Methods and Quantitative Methods. Risk management is the systematic process of identifying, analyzing, responding to project risk, and it includes maximizing the probability, consequences of positive attributes minimizing the probability and consequences of attributes adverse to project objectives.

The key success indicators of construction management system(s) include completing the project with cost and time, within the planned budget and duration, and within the required quality, safety, and environmental limits. These goals are interrelated where each of them is affecting and affected by the others. An accurate cost estimating and scheduling should be sought in order to meet the overall budget and time deadline of a project.

# 2.3 Risk Factors for the construction of the Incineration Plant

The purpose of study is to review and compose the previous facts and discussions about risk factors and to provide a complete list of major sources of risk factors in the life cycle of construction projects based on extensive literature study.

# 2.3.1 Identify and Quantify Risk Factors

Identify risk factors and influence: Finally, from the survey and interview results, risks and their impact, influence, and priorities were identified. To quantify the risks for comparison, the multiplied the probability by the rated impact, both scored from 0 to 1.



Fig. 3.2.1 Calculation for Risk Factors

If the importance of a risk and the influence on the project are both low, the risk is regarded as a low risk, and the opposite case will be a high risk. The vertical axis indicates the probability of occurrence (importance) and the horizontal axis represents the impact of the risk (influence) on the project. The intersection of possibilities and influences is calculated by multiplying the numerical values of the two criteria called the risk score. The score ranges are as follows: from 0.01 to 0.15 for Low Risk, from 0.15 to 0.35 for Moderate Risk, and from 0.45 to 0.81 for High Risk.

#### **Risk Impact = Importance × Influence**

# 2.4 Results

The last research goal is to identify and quantify the potential risk factors existent in Incineration plant construction. The associated scores for the risk factors based on the surveys shown as below:

International Research Journal of Engineering and Technology (IRJET)Volume: 07 Issue: 07 | July 2020www.irjet.net

| Risk Factors                                        | Importance | Influence | <b>Risk Impact</b> | Degree of Risk | Priority |
|-----------------------------------------------------|------------|-----------|--------------------|----------------|----------|
| A labour strike                                     | 0.88       | 0.9       | 0.79               | High           | 1        |
| Occurrence of safety accident                       | 0.76       | 0.7       | 0.53               | High           | 2        |
| Social issues of local                              | 0.58       | 0.54      | 0.31               | Moderate       | 3        |
| Shortage of local labour                            | 0.54       | 0.52      | 0.28               | Moderate       | 4        |
| Lack of technical ability of subcontractor          | 0.52       | 0.6       | 0.24               | Moderate       | 5        |
| Occurrence of design change                         | 0.44       | 0.48      | 0.21               | Moderate       | 6        |
| Error of scheduling equipment operation             | 0.42       | 0.34      | 0.14               | Moderate       | 7        |
| Error of calculating material quantity              | 0.38       | 0.34      | 0.13               | Moderate       | 8        |
| Shortage of transportation facilities accessibility | 0.38       | 0.32      | 0.12               | Moderate       | 9        |
| Delayed payment of construction expense             | 0.3        | 0.3       | 0.09               | Low            | 10       |

# Table 3.3.1 Calculation for Degree of Risk

# 3. Conclusion

**1.** For the treatment of huge amount of municipal solid waste Incineration method is the best method and had potential to produce **36500 MW/h of electricity annually**. Block cost estimation for the construction of Incineration plant is **877.76 Cr** which could recover by selling Electricity produce by plant. Hence it is Feasible to construct incineration plant for effective solid waste management system for Pune City.

**2.** Critical Path is found out for construction of plant as follows:

| Sr. No. | Activities                         |
|---------|------------------------------------|
| 1.      | Excavating to foundations          |
| 2.      | Foundations and concrete work      |
| 3.      | Boiler main steel                  |
| 4.      | Boiler pressure parts installation |
| 5.      | Boiler and auxiliary system test   |
| 6.      | Firing test                        |
| 7.      | T/G and auxiliary system test      |
| 8.      | Trial Operation.                   |

# One needs to be very careful while executing these critical activities to complete the project in gives schedule as these activities have 0 float. It could affect whole schedule of construction of the plant.

**3.** Using the @Risk Monte Carlo software (Microsoft Excel 2016), simulated 1000 projects based on the software's value at risk assessment. The results of this simulation is **minimum project duration of 895.48 days**, **maximum 1095.58 days**, and **average 991 days**. Probability to complete the construction of the project into given range i.e. 896 – 1096 days is **85**%.

**4.** From these factors, A labor strike and Occurrence of safety accident these two factors are most important and have high degree of risk. So, during the construction of the plant contractor should take precautions so that this factor does not affect the schedule of construction.

# **References and Bibliography**

- **1.** A Study on Risk Factors Involved in the Construction Projects by Surabhi Mishra, Brijesh Mishra (International Journal of Innovative Research in Science, Engineering and Technology Vol. 5, Issue 2, February 2016)
- **2. Simplified program evaluation and review technique (pert)** by Wayne d. Cottrell (journal of construction engineering and management / January/February)
- **3.** Risk assessment in construction schedules by B. Mulholland and J. Christian (journal of construction engineering and management)
- 4. Project Management Information Systems for Construction of Thermal Power Plant: A Case Study with Special Reference to National Thermal Power Corporation Ltd., India by Dr. D. K. Choudhury (Dean & Professor Gitarattan International Business School, Delhi) – (International Journal of Engineering Research & Technology (IJERT) - Vol. 3 Issue 3, March – 2014
- **5.** Developing a Construction Duration Estimation Model to Ensure the Safety in Apartment Housing Construction Sites by Jin Ho Lim, (KSCE Journal of Civil Engineering volume 22, pages2195–2205(2018))
- **6.** Development of waste-to-energy (wte) project at deonar, Mumbai feasibility & detailed project report by Tata Consulting Engineers Limited Document No. TCE 10176A-2024-DPR-R1 October 2016
- **7. Solid Waste Management in PCMC (3R"s Principle)** by Niraj Burge, Sunil Gangurde (U.G. Student, Department of Civil Engineering, Rajarshi Shahu College of Engineering, Tathwade, Pune-411033, Maharashtra, India) International Journal of Science and Research (IJSR) May 2015
- 8. Feasibility study of waste incineration plant in the city of Misurata- Libya by Ibrahim Badi\*, Mohamed Sawalem, Ali Shetwan (Industrial Engineering Department, College of Industrial Technology, Misurata, Libya) International journal of engineering sciences & research technology February, 2016
- **9.** Feasibility study of power generation from municipal solid waste of Haridwar city by SIDDHARTH JAIN\* and M. P. SHARMA (Int. J. Chem. Sci.: 6(4), 2008, 1920-1941)
- **10.** Improve the calorific value of Municipal Solid Waste by Adding Additive Material for Incineration Process", by Aditya Dhanbhar, Shubham Ghatage, Shubham Pawar, T.S. Khambekar (2018), (IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 15, Issue 2 Ver. V (Mar. Apr. 2018), PP 77-82)
- Bibliography
- https://www.pmc.gov.in/en
- www.egovamc.com
- www.swachcoop.com