
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 237

Secure Deduplication Scheme on Big Data Storage of Cloud

 Pruthveesh C 1, Renuka prasad R2, Divakar K M 3

1Student, Dept. of CSE, S J C Institute of Technology, Chickballapur, Karnataka, India
2Student, Dept. of CSE, S J C Institute of Technology, Chickballapur, Karnataka, India

3Assistant Professor, Dept. of CSE, S J C Institute of Technology, Chickballapur, Karnataka, India
---***--
Abstract - Secure data deduplication as it can eliminate redundancies over encrypted data, has been widely developed in cloud
storage to reduce storage space and communication overheads. Among them, the convergent encryption has been extensively
adopted. However, it is vulnerable to brute-force attacks that can determine which plaintext in a message space corresponds to a
given ciphertext. Many existing schemes have to sacrifice efficiency to resist brute-force attacks, especially for cross-domain
deduplication, which is inevitably contrary to practical applications. Moreover, few existing schemes consider protecting the
message equality information .we propose an efficient and privacy-preserving big data deduplication scheme for a two-level multi-
domain architecture. Specifically, by generating a random tag and a constant number of random ciphertexts for each data.

Key Words: Secure data deduplication, cross-domain deduplication, brute-force attacks, message equality information.

1. INTRODUCTION

UNDER big data-driven society, data deduplication technique has been widely developed in cloud storage because it can
significantly reduce storage costs by storing only a single copy of redundant data. Indeed, data deduplication can reduce
storage costs by more than 50% in standard file systems and by more than 90% for backup applications, and these savings
translate into substantial financial savings to cloud service providers and users [2]. However, considering security and privacy
concerns of outsourced data, users are likely to encrypt data with their own keys before outsourcing. This impedes the cross-
user deduplication since an identical data will be encrypted into different ciphertexts by different users’ keys, i.e., it is
challenging to identify duplicates over different ciphertexts. Thus, how to efficiently conduct data deduplication over encrypted
data becomes a pressing issue.

Convergent encryption [3] provides the first viable solution to allow deduplication on encrypted data, which is formalized as
the message-locked encryption later in [4]. It encrypts the data with the convergent key derived by computing the
cryptographic hash value of the data itself. Since the encryption is a deterministic symmetric encryption algorithm, identical
data will generate the same convergent key and ciphertext, which achieves deduplication on encrypted data. However, the
convergent encryption is vulnerable to brute-force attacks due to its deterministic property. To resist such attacks, some
server-aided encryption schemes [5], [6], [7] have been presented. In these schemes, a domain or tenant (e.g., a company or
university) deploys a dedicated key server to help affiliated users to generate the convergent key and the corresponding tag
through an interactive protocol. Unfortunately, since key servers in different domains randomly select different secret keys,
cross-domain deduplication is infeasible, which dramatically reduces the effectiveness of data deduplication.

2. RELATED WORKS

2.1 support cross-domain deduplication, an inter-deduplication algorithm:
Since only the encrypted data uploaded by the first user will be stored in the cloud, to ensure that the encrypted data can be
correctly decrypted by users with ownership, the number of generated ciphertexts is linear with the number of domains. Thus,
the scalability issue will inevitably arise when the number of domains explodes, which will lead to massive computational and
communication overheads for users and the cloud service provider. Moreover, the message equality information of outsourced
data (i.e., the information about whether two different ciphertexts correspond to an identical plaintext) may also leak the content
of encrypted data to some extent [2]. Although this information disclosure is inevitable in data deduplication, we hope to
minimize such information leakage. Recently, two solutions [9], [10] have been drawn to achieve this goal. The crux of both
schemes is to permit only the deduplication operator to know such information.

2.2 deduplication operator
The first scheme [9] employs an additional trusted server to complete the duplicate verification. However, the assumption that
the trusted server is always online and will not be compromised is too strong to be accepted in practice [11]. The second scheme
[10] seems a good candidate because it protects the message equality information by introducing a technical method rather than
an additional trusted server. Besides, this scheme efficiently achieves cross-domain deduplication and resists brute-force attacks

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 238

at the same time. Unfortunately, this scheme can only support the crossdomain deduplication for two different domains. secure
cross-domain (or cross-user) deduplication schemes are evaluated in terms of two factors: security properties that each scheme
provides and system overheads incurred on the cloud service provider and users.existing related schemes cannot efficiently
achieve the strong confidentiality of outsourced data while resisting bruteforce attacks.

2.3 we propose an efficient and privacy-preserving multi-domain big data deduplication scheme in cloud
storage:

There are three contributions that this paper gives:

• First, we propose a secure multi-domain deduplication scheme that can support data deduplication not only in the same
domain (called intra-deduplication) but also across multiple different domains (called inter-deduplication). Specifically, the
proposed scheme generates the random convergent key and the random tag based on the bilinear pairing technique [13] to
ensure data confidentiality. The proposed scheme only needs to produce a constant number of random ciphertexts to ensure that
the outsourced encrypted data can be correctly decrypted by users with ownership. In the proposed scheme the cloud service
provoider performs interdeduplication using Boneh-Goh-Nissim cryptosystem [14].
• Second, to improve the time complexity of duplicate search, we construct a deduplication decision tree based on the B+
tree [15], which works well for the big data storage system. In particular, the length of plaintext can be used to represent the
keyword in the B+ tree.
• Third, we analyze the security of the proposed scheme and demonstrate that it can achieve strong data confidentiality
and data integrity while resisting brute-force attacks. Besides, extensive performance evaluations justify the efficiency of the
proposed scheme in terms of computational, communication and storage overheads.

2.4 System Model:

Two-level multi-domain deduplication model, which provides the intra-deduplication and inter-deduplication.
More specifically, the first level contains a number of domains D = {D1,D2,...,Dn}. Each domain Di corresponding to an
organization

The second level includes a cloud service provider, which conducts the inter-deduplication

• Key distribution server (KDS): The KDS is responsible for generating different private keys for users from different
domains and a secret for the cloud service provider to perform the inter-deduplication
• Cloud service provider (CSP): The CSP offers storage services for users. Although the CSP seems to have abundant
storage space, the corresponding costs of the management and maintenance for big data are relatively expensive. Hence, the CSP
prefers to conduct the inter-deduplication over outsourced data from all domains to save costs by storing only one copy
• Users: Users from the same domain receive the same private key from the KDS, on the contrary, users from different
domains possess different private keys. Based on the received private key, users can generate a random convergent key used for
encrypting the data and an intratag used for deduplicating.
• Agent (Ai): In order to improve the efficiency of duplication search and resist an online brute-force attack launched by
malicious users, an agent Ai located between users and the CSP is hired by Di for performing intra-deduplication and
transforming a random intra-tag into a random intertag.

2.5 A random intra-tag intradeduplication:

If a duplicate is found, Ai returns the corresponding feedback. Otherwise, Ai transforms the intra-tag into a random inter-tag and
sends it to the CSP for inter-deduplication. Note that only when the CSP does not find a duplicate, U needs to encrypt m and
upload the corresponding ciphertext.

If a duplicate is found, Ai returns the corresponding feedback. Otherwise, Ai transforms the intra-tag into a random inter-tag and
sends it to the CSP for inter-deduplication. Note that only when the CSP does not find a duplicate, U needs to encrypt m and
upload the corresponding ciphertext.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 239

Fig. 1: System model under consideration

2.6 Threat Model:

In our system, the KDS is assumed to be completely trusted and would hardly be compromised by any adversary because it only
participates in system setup. Similar to the existing literature dealing with the security in cloud storage [16], [17], the CSP and Ai,
considered as honest-but-curious, will honestly follow the underlying scheme, but are curious about contents of outsourced
encrypted data. Specifically, based on the background knowledge about the plaintext space, the CSP would collude with Ai to
guess the content of a targeted ciphertext by launching an offline bruteforce attack. Concretely, they will not frame the CSP or
corresponding Ai by uploading invalid data. However, they may be interested in obtaining the content of encrypted data without
ownership. Besides, if a malicious user (corrupted by the adversary) knows the plaintext space, he/she would try to launch an
online bruteforce attack by repeatedly executing the data upload procedure to guess the content of the targeted ciphertext. Note
that users would not collude with the CSP or Ai due to their own privacy concerns and the reputation of the CSP or Ai

3. RELATED WORKS

Based on the threat model,

• Data confidentiality. There exist two kinds of data confidentiality in our model. One is related to the semantic security of
encrypted data and tags, i.e., any adversary even corrupting the CSP and Ai or unauthorized users cannot feasibly extract any
information about a plaintext from its ciphertext or tag.

• Data integrity. In the design of secure data deduplication, only one copy will be stored in the CSP. Since this unique copy
may be altered due to some physical failures or monetary reasons, the proposed scheme should provide data integrity to ensure
that users can verify whether the downloaded data are modified or not.

3.1 MODELS AND DESIGN GOALS:

We formalize the system model and threat model used in this paper, and identify our design goals.

• Brute-force attack resistance. With the background knowledge of the plaintext space, any adversary even corrupting the
CSP or Ai cannot determine which plaintext corresponds to a specific tag and ciphertext through an offline brute-force attack. It
is worth noting that the CSP or Ai can determine whether two ciphertexts correspond to the same plaintext by comparing
received tags, but they cannot determine which plaintext in the plaintext space corresponds to these ciphertexts. Besides, the
malicious user (corrupted by the adversary) tries to guess the content of the targeted ciphertext by launching online brute-force
attacks. Thus, the proposed scheme should also try to resist such attacks.

• Efficiency. Apart from security requirements, efficiency is the most important metric for data deduplication [16]. Actually,
applying secure deduplication would lead to some unavoidable costs for users and the CSP [12], e.g., tag generation, duplication
search, and verification. Therefore, achieving the efficiency of computational, communication and storage overheads is also our
design goal, especially in today’s big data-driven society. Meanwhile, facing a vast volume of data, the time complexity of
duplication search should be reduced as much as possible.

4. PRELIMINARIES
we outline the bilinear groups of composite order

4.1 Bilinear Groups of Composite Order

Given a security parameter κ, a composite bilinear parameter generator Gen(κ) outputs a tuple (p,q,G,GT,e), where p and q
are two κ-bit primes, G and GT are two finite cyclic multiplicative groups of composite order N = pq, and e : G × G → GT is a
bilinear map with the following properties:

• Bilinear: e(xa,yb) = e(x,y)ab for all x,y ∈ G, and a,b ∈ ZN.

! 01 "#$%&’()*+,(&-)#*+%()&.!/

23(45&6. ! " 1

7 ’()’
#9:+4&6&. 8 # " 1 #9:+4& 8 n . # $ 1

;(<&%+’5)+=$5+#4&’()*().;8/1

23(454. ! $ & 1

#9:+4& 8 i . # % 1

!! !!

4 >45() ?%(%$-"+,:5+#

4 ?%(%$-"+,:5+# >45):

23(45&+. ! % 1

’()’ 7 7 ’()’

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 240

• Non-degeneracy: If g is a generator of G, then e(g,g) is a generator of GT with the order N.

• Computability: For all x,y ∈ G, there exists an efficient algorithm to compute e(x,y) ∈ GT.

4.2 Intra-deduplication

“uploadk(Lm,τm)”, Ai performs the intra-deduplication as follows.
1) Based on the private key ai, compute
(2)Then, compute the hash of .

4.2.1 Inter-deduplication
After receiving the message “uploadk(i,Lm,τˆm)” from Di, the CSP performs the inter-deduplication to further eliminate the
redundancy of data. Note that in the intra-deduplication, Ai judges whether the duplicate exists by comparing hash values. Thus,
the search complexity is very efficient, i.e., O(1). However, in the inter-deduplication, since inter-tags are random elements in G
generated by BGN encryption, the same data will correspond to different inter-tags. Thus, the CSP cannot compare the hash
values of inter-tags to check the duplicate. Nevertheless, if the one by one search method is adopted, the time complexity of
duplicate search increases linearly with the number of encrypted data stored in the CSP, which will lead to huge search costs,
especially for big data. Accordingly, we construct a deduplication search tree (DDT) based on the B+ tree for efficiently searching
duplicates.

Algorithm 1:
 Search algorithm in the deduplication decision tree
Function: Search(Lm,node)
1: The search function Search(Lm,node) is started from the root node, i.e., node = root, and it proceeds to a leaf node as follows:
2: if node is a leaf then
3: return node
4: else
5: case 1: Lm < δ1 then
return Search(Lm,P0)
case 2: δk 6 Lm < δk+1 then
return Search(Lm,Pk)
case 3: δnc−1 6 Lm then return Search(Lm,Pnc−1)
9: end if

Algorithm 2:
Inter-deduplication algorithm
1: For the received data (i,Lm,τˆm), the CSP calls the function Search(Lm,node) in the DDT to search whether the value Lm has
already been stored.
2: if the same value is not found then
3: return “data upload”
4: else
5: the same value Lm∗ is found, e.g., (j,τˆm∗,Bm∗,Cm∗), and then check whether i = j holds.
6: if i = j then
7: return “data upload”
8: else
9: verify whether the following equation holds
 e(τˆm,gj)p = e(τˆm∗,gi)p (4)
10: if Eq. (4) holds then
11: return “duplicationklinkm∗kBm∗”
12: else
13: return “data upload”
14: end if
15: end if
16: end if
Based on the above analyses, we can obtain that if and only if mk = mt, i.e., h2(mk) = h2(mt), then
 αi+jγph2(mk) αi+jγph2(mt)
 e(g,g) = e(g,g)
⇔ e(τˆmk,gj)p = e(τˆmt,gi)p

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 241

Note that h2 : {0,1}∗ → {0,1}κ−1 is a cryptographic hash function, and the hash value satisfies h2(mk) < q for the arbitrary data
mk.

4.3 Data encryption key recovery:

Upon receiving the message “duplicationklinkm∗kBm∗”, Ai forwards “duplicationkBm∗” to the user U and stores

(Bm∗,linkm∗) together with Tm, i.e., (Tm,Bm∗,linkm∗), where m = m∗. Otherwise, Ai directly forwards the message “data
upload” to U. After receiving the feedback from Ai, if the message is “data upload”, U performs data encryption operations. If the
received message is “duplicationkBm∗”, U conducts key recovery operations. The details are described as follows. the data m
before outsourcing as follows.

βm ∈ ZN, set Km = e(gn+1,g)βm, • Randomly choose

and generate the convergent key ckm as

 .

Note that the value e(gn+1,g) can be computed as e(gi,gn+1−i).

 • Generate the ciphertext of m as

Cm = SKEckm(m), where the set I = {1,2,...,n} is comprised of the identifiers of n domains and SKEckm(•) represents a fast
symmetric encryption algorithm, like AES. Finally, the ciphertext tuple of the data m is (Bm,Cm).

Note that the ciphertext Bm is used to encapsulate the random value Km. The idea of computing Bm comes from the
broadcast encryption scheme. After data encryption, U sends (Bm,Cm) to Ai. Upon receiving (Bm,Cm), Ai forwards it to the CSP
and stores (Tm,Bm). Finally, the CSP stores (i,Lm,τˆm,Bm,Cm) in the appropriate location of the DDT by leveraging Algorithm 1,
and sends the logical link linkm to Ai for storing. That is, Ai finally stores

(Tm,Bm,linkm).

Key recovery: If the message is “duplicationkBm∗”, then U

recovers the convergent key with the private key di and the data m as follows.

• Let Bm∗ = (B0,B1), compute

• Then, U can recover ckm∗ with the data m as : ckm∗ =

 . Note that in this case, the data m

is the duplicate of the data m∗, i.e., m = m∗.

The correctness of Eq. (7): Based on Formula (6), the Accordingly, we can obtain.

Finally, U deletes the data m and just stores the information

(Tm,ckm,labelm), where , labelm is the

label of the data m, e.g., the name or feature used for identifying the data m). The reason for using labelm is to make it easy for
users to identify each data. Note that if m is the duplicate, then , where e(gn+1,g)βm∗ is generated by the first uploader.
Otherwise, is generated by himself.

4.4 Data Download

After a period of time, when the user U from Di wants to download an outsourced data m, U uses the corresponding label labelm
to find the stored Tm, and then sends a request “downloadkTm” to Ai. After receiving the request “downloadkTm”, Ai finds the
same hash value and get the corresponding link linkm. Then, Ai returns linkm to U. After that, U can directly download the
ciphertext Cm from the CSP based on the linkm.
Finally, U decrypts Cm with the stored convergent key ckm
and verifies data integrity. The details are introduced as follows.
• U recovers m0 by decrypting Cm with ckm.
• Then, with the recovered m0, U computes Tm0 =
 , and verifies the integrity by checking whether Tm0 = Tm holds. If it does not hold, it means that m has been corrupted, i.e., m0
6= m.
, if a user from Di has previously tried to upload the data m. After the data deduplication

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 242

data. Therefore, users only need to interact with Ai to obtain the corresponding logical link, which can reduce the download time
to a great extent compared to the interaction with the CSP.

4.5 MQ135 Sensor Definition

1. (Computational Diffie-Hellman (CDH) Problem). The CDH problem in G is defined as follows: Given g,ga,gb ∈ G for
unknown a,b ∈ ZN, compute gab ∈ G.
The n-BDHE problem is: given a vector of 2n+
1 elements
G2n+1 for unknown α ∈ ZN, compute e g,h)αn+1 ∈ GT. G2n+1 for unknown α ∈ ZN, compute e g,h)αn+1 ∈ GT.
It is worth noting that the input vector is missing the term gαn+1 so that the bilinear map seems to be of little help in computing
the required e g,h)αn+1.
Definition 3. (Decisional n-BDHE problem). The decisional n-
BDHE problem is stated as follows: given (2n + 1) elements
 and
R ∈ GT for an unknown random α ∈ ZN, determine whether R = e g,h)αn+1 or a random element from GT.
Definition 4. (The (decisional) n-BDHE assumption) We say that the (decisional) n-BDHE assumption holds if no probabilistic
and polynomial-time algorithm has advantage at least in solving the (decisional) n-BDHE problem.

4.6 Boneh-Goh-Nissim Cryptosystem:

Boneh-Goh-Nissim cryptosystem (BGN) includes three algorithms: key generation, encryption, and decryption. The details are
described as follows.
• Key generation: Given a security parameter κ, run Gen(κ) to get a tuple (p,q,G,GT,e) as described in Section 3.1 and set
N = pq. Randomly choose two generators g,x ∈ G and set y = xq. The private key is p and the corresponding public key is pk =
(N,G,GT,e,g,y).
• Encryption: Given a message m ∈ {0,1,...,W}, where
 , choose a random number r ∈ ZN, and compute the ciphertext as C = gmyr ∈ G.
• Decryption: Given the ciphertext C and private key p, compute Cp = (gmyr)p = (gp)m. Let g0 = gp, then
Cp = g0m. To obtain m, it suffices to compute the discrete logarithm of g0m. Actually, when m is a short message, say The
Boneh-Goh-Nissim cryptosystem (BGN) includes three algorithms: key generation, encryption, and decryption. The details are
described as follows.
• Key generation: Given a security parameter κ, run Gen(κ) to get a tuple (p,q,G,GT,e) as described in Section 3.1 and set
N = pq. Randomly choose two generators g,x ∈ G and set y = xq. The private key is p and the corresponding public key is pk =
(N,G,GT,e,g,y).
• Encryption: Given a message m ∈ {0,1,...,W}, where
 , choose a random number r ∈ ZN, and compute the ciphertext as C = gmyr ∈ G.
• Decryption: Given the ciphertext C and private key p, compute Cp = (gmyr)p = (gp)m. Let g0 = gp, then
Cp = g0m. To obtain m, it suffices to compute the discrete logarithm of g0m. Actually, when m is a short message, say m 6 W for
some small bound√ W, the decryption takes expected time O(W) utilizing Pollard’s lambda method [24].

4.7 B+ Tree:
The B+ tree of order f is a very efficient, dynamic and balanced search tree that satisfies the following properties:

• The root node has at most f children and at least two children if it is not a leaf node.
• Each non-leaf node with nc children contains nc − 1 keywords: (P0,δ1,P1,δ2,P2,...,δnc−1,Pnc−1), where
 δk, k = 1,2,...,nc−1, is a keyword with δk−1 < δk.
 Pk is a pointer that points to the root of the subtree. All the keywords pointed by Pk−1 are smaller than δk, but greater

than or equal to δk−1.
 The number of children is satisfied .Each leaf node (unless it is a root) must contain nc − 1 keyword and pointer pairs:

(δ1,P1,...,δnc−1,Pnc−1), where All data is stored in leaf nodes, and the pointer Pk, k = 1,...,nc − 1, points to the data that
contains the keyword δk.

THE PROPOSED SCHEME which includes three phases: system setup, data upload, and data download.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 243

System Setup:

The trusted KDS generates private keys for users, a secret for the CSP and the corresponding system parameters. Specifically, the
KDS first runs the composite bilinear parameter generator Gen(κ0) to output a tuple (N = pq,G,GT,e). Then, the KDS generates
system parameters and private keys as follows.

• Randomly choose two generators g,x ∈ G and two numbers α,γ ∈ ZN, and then compute y = xq, ν = gγ and gi =
gαi for i = 1,2,...,n,n + 2,...,2n.

• For all users in Di, compute the private key , where i = 1,2,...,n. Note that n is the total number of domains in
system and i is the identifier of Di.

• Choose three cryptographic hash functions: h1 : {0,1}∗ → {0,1}κ1, h2 : {0,1}∗ → {0,1}κ0−1 and h3 : G → {0,1}κ1,
where κ1 is the bit length of the convergent key.

• Finally, the KDS sends di to all users in Di and p to the CSP by secure channels, and publishes system
parameters pp = (N,G,GT,e,h1,h2,h3,y,g,g1,...,gn,gn+2,...,g2n,ν).

 The proposed scheme can easily support the addition of users to the existing domains. Specifically, suppose that a user U∗ is
added to the domain Di, we can introduce a simple identity verification protocol that allows U∗ to verify the legitimacy to the
KDS. if the number of domains is 10 in the current situation, then we can set n to 20. The reserved portion can be used for
subsequent domain additions.

4.9 Data Upload:

The data upload phase mainly includes four parts: tag generation, intra-deduplication, inter-deduplication and data encryption /
key. For each user U in Di, where i = 1,2,...,n, when U wants to upload the data m, U first generates an intra-tag for data
deduplication. Then, the agent Ai performs the intra-deduplication to check the duplicate in the same domain Di. If the duplicate
does not exist, then the CSP needs to further conduct the interdeduplication among different domains, . Finally, if the duplicate
is found, then U recovers the convergent key generated by the first uploader. Otherwise, U encrypts m and uploads the
corresponding ciphertexts. The details are described as follows.

5. SECURITY ANALYSIS

In particular, following the design goals illustrated in Section 2.3, our analysis will focus on how our scheme can achieve data
confidentiality and data integrity while resisting brute-force attacks.

5.1 Data Confidentiality
Data confidentiality of our scheme includes two aspects: (1) The semantic security of encrypted data and tags; (2) The
preservation of the message equality information. The details are analyzed as follows.

5.1.1 Semantic security of encrypted data and tags

In our scheme, any adversary even corrupting the CSP and Ai or unauthorized users cannot feasibly extract any information
about a plaintext from its ciphertext or tag.

First, we analyze that Ai and the CSP cannot obtain the content from the stored or received data. Specifically, Ai can receive
the data (Lm,τm,Bm,Cm) from the user U in Di. With the private key ai, Ai can obtain gαiγh2(m) from the intra-tag τm (see Eq. (2)). If Ai

wants to obtain the data m from gαiγh2(m), Ai first needs to overcome the discrete logarithm problem (DLP) to obtain αiγh2(m),
and then deals with the integer factorization to obtain h2(m). At last, Ai has to compute the one-way hash function to get m.
However, the DLP, integer factorization and one-way hash function have been proved to be computationally infeasible difficult
problems [28]. Hence, it is infeasible to get m from the intra-tag τm. If Ai wants to get m from (Bm,Cm), Ai tries to get the random

element Km = e(gn+1,g)βm, which is the crux of the convergent key . However, based on the n-BDHE hard
problem (see Definition 2), Ai cannot obtain Km from the parameters (gβm,g1,...,gn,gn+2,...,g2n). Besides, based on the decisional n-
BDHE problem (see Definition 3), without the private key di, Ai cannot recover Km from Bm (see [27] for details). Without
knowing the random Km, the convergent ciphertext Cm is a random ciphertext generated by the symmetric encryption
algorithm, which satisfies the semantic security [4], [29]. Note that the value Lm denotes the size of the data m, it is a feature
that every data possesses. In general, this value would not leak any information about the data content. Therefore, Ai cannot
obtain any information about the data m from the obtained data(Lm,τm,Bm,Cm).

The CSP stores (i,Lm,τˆm,Bm,Cm) received from Ai. Similarly, without the private key di, the CSP cannot obtain the data m from
the ciphertext tuple (Bm,Cm). For the inter-tag τˆm = gαiγh2(m)yr generated by the BGN encryption, the CSP possesses the secret p
and can compute (τˆm)p = (gp)αiγh2(m).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 244

Recall in Section 3.2, when the plaintext space is small, say , it is possible to compute the discrete logarithm with
Pollard’s lambda method. However, the parameters α, γ and h2(m) belong to a large space. At this point, the discrete logarithm
becomes a hard problem. Thus, the CSP cannot obtain any private information (i.e, the data m or the private parameters α and
γ).

Then, we analyze that users lacking ownership cannot read the data content from the encrypted data. For any user U in Di, if U
tries to obtain the data that does not own by himself, U can choose a random number H such that the bit length of H is κ0−1.

Then, U generates an intra-tag with the private key di. After that, U interacts with Ai to execute the data
upload phase. If an identical hash value happens to be stored, i.e., H = h2(m∗), then U can receive the corresponding ciphertext
Bm∗. Accordingly, U can recover the value Km∗ = e(gn+1,g)βm∗ from Bm∗ by computing Eq. (7). However, U does not possess the
data m∗, and thus U cannot generate the convergent key ckm∗ = h1(Km∗km∗). In fact, the probability that a randomly selected H

equals to h2(m∗) is very small, i.e., . Thus, when the security parameter κ0 is large enough, it is almost impossible to
obtain Km∗ through such attempts.

5.1.2Preservation of message equality information

We prove that our scheme can protect the message equality information from disclosure to some extent. Actually, in order to
achieve data deduplication, the message equality information has to be leaked. Fortunately, our scheme can minimize such
disclosure. Specifically, during the intra-deduplication, before obtaining the hash value Tm to compare, Eq. (2) has to be

performed, i.e., . Since only Ai possesses the private key ai, based on the CDH problem (see
Definition 1), only it can compute Eq. (2). In other words, only Ai knows the message equality information in the domain Di. In
the inter-deduplication, to verify whether two inter-tags from different domains.

5.2 Data Integrity

After obtaining the data m0, it is very necessary for U to verify data integrity to ensure the stored data m0 is not altered. The
reason is that deduplication techniques only keep one copy. Without the assurance of data integrity, once the outsourced data
is altered, U cannot obtain the correct original data and even cannot be aware of such change.Our scheme allows users to easily

verify data integrity. Specifically, U generates the value . Recall that after the data upload phase, U stores the

hash value . Then U checks whether Tm0 = Tm holds. As we consider hash functions h2 and h3 as random oracles,
if Tm0 6= Tm, then m0 6= m, which implies that the downloaded data m0 is corrupted.

5.3 Brute-Force Attacks Resistance

In this section, we analyze that our scheme can prevent the CSP, Ai or the malicious user (corrupted by the adversary) from
obtaining the content of the targeted ciphertext by launching bruteforce attacks.

5.3.1Security against offline brute-force attacks

First, we consider an offline brute-force attack launched by the CSP or Ai on the accessible information. Suppose the CSP knows
the background knowledge of the plaintext space M, and wishes to know which data corresponds to the specific ciphertext or

tag. That is, for a stored data (i,τˆm,Bm,Cm), where and Cm = SKEckm(m), the
CSP wishes to determine which data mt ∈ M generates them by launching offline brute-force attacks. More specifically, with the

secret key p, the CSP computes (τˆm)p to obtain . For each data mt ∈ M, the CSP first computes the hash value h2(mt), and

then wishes to generate to check whether holds. If it holds, then it implies that h2(m) = h2(mt), i.e.,

m = mt. Unfortunately, the CSP cannot generate the valid value without the private key di. Thus, the CSP cannot obtain
the content from the inter-tag by an offline brute-force attack. Moreover, without the private key di, the CSP cannot obtain the
value Km = e(gn+1,g)βm from Bm or public parameters due to the (decisional) n-BDHE hard problem. Accordingly, the CSP cannot
generate the valid convergent key ckmt = h1(Kmkmt) without Km. That is, the CSP can neither generate a valid ciphertext Cmt nor
decrypt Cm to judge whether mt = m or not. Therefore, the CSP cannot determine which plaintext corresponds to the specific
encrypted data and tag by launching offline brute-force attacks. In our threat model, Ai also wants to obtain the content of the
stored data by launching offline brute-force attacks. Specifically, for the obtained data (τm,Bm,Cm), where τm = h2(m) airm,grm), Ai

can use the private key ai to obtain (di gh2(m) di from the intra-tag τm. Similarly, for each data mt ∈ M, Ai

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 245

computes h2(mt) and tries to generate to check h2(mt) h2(m) whether di = di holds. However, it cannot generate a

valid without di. Similar to the CSP, Ai cannot obtain useful information from the encrypted data (Bm,Cm). Therefore, Ai

also cannot guess the content of the targeted ciphertext or tag by launching offline brute-force attacks.

5.3.2Security against online brute-force attacks

In addition to the CSP and Ai, a malicious user (corrupted by the adversary) from the domain Di may launch an online
bruteforce attack by repeatedly executing the data upload procedure. For each data mt ∈ M, he/she generates the intra-tag τmt

and tries to upload mt to observe whether actual uploading of mt has occurred. The online brute-force attack repeats this
procedure until the duplicate exists. That is, the malicious user can know the content corresponding to the targeted ciphertext.

Although such an attack cannot be completely prevented because the user has the private key, the actual effect of the attack
can be minimized. Similar to existing works associated with bruteforce attacks [5], [8], [11], we adopt the rate-limiting strategy
to mitigate such attack. Specifically, we use the bounded rate-limiting approach of DupLESS [5]. In this approach, each Ai limits
the total number of data upload requests a user can make during a fixed interval of time, e.g., Ai can set the maximum number of
times to perform Eq. (2). By doing so, we can greatly reduce the capability of the malicious user to execute this online brute-
force attack.

6. PERFORMANCE EVALUATION

We evaluate the performance of our scheme in terms of computational, communication and storage overheads. Moreover, we
give a comparison with Shin et al’s scheme [8] and Jiang et al’s scheme [30]. Since these three schemes use a symmetric
encryption algorithm to generate the data ciphertext, we ignore related overheads of the same part in the comparison.

6.1 Theoretical analysis

In this section, we discuss the theoretical analysis and give a comparison of three schemes. Similarly to [8] and [30], we ignore
the costs of the KDS since it does not participate in data upload and download phases. Besides, compared to the exponentiation
and pairing operations, the computational cost of a hash operation is very fast, which can be ignored. In what follows, we
describe computational costs and communication overhead of uploading and downloading the data m, and also show the
related storage costs.

6.1.1 Computational Cost

For the sake of simplicity, we use tm, tmt, te, tet and tp to represent the computational cost of a multiplication in G, a multiplication
in GT, an exponentiation in G, an exponentiation in GT and a pairing, respectively.

1. Computational cost of our scheme. In the phase of data up load, an intra-tag τm is first generated, which requires 3te + tm. Then,
Ai computes Eq. (2) and Tm to check the duplicate, which costs te + tm. If the duplicate exists, then Ai returns “duplicationkBm∗” to
the user. Otherwise, Ai computes the inter-tag τˆm, which costs te + tm. After that, the CSP receives (i,Lm,τˆm) and performs the
inter-deduplication. Based on Algorithm 2, the CSP first searches whether the value Lm is recorded. The search complexity in

DDT is , where |Sall| denotes the number of stored data in the CSP. If the same value is found, the CSP needs to

verify whether Eq. (4) holds, which costs 2tp. Note that . Once the system is set up, the

value , can be computed offline by the CSP and will remain unchanged. Thus, the cost of can be ignored. After
finishing data deduplication, if the duplicate is not found, the user encrypts m as (Bm,Cm). In addition to the cost of the Cm, the
additional costs are 2te + tet. Note that, Bm is computed as

.

Similarly, once the system is set up by the KDS, the value (ν · Q
k∈I gn+1−k) is a constant. Accordingly, (n − 1)te can be ignored.

However, if the duplicate is found, the user needs to recover the convergent key ckm∗. The crux is to obtain the value e(gn+1,g)βm∗

by computing Eq. (7). Likewise, for each user from Di, di ·Q
k∈I,k6=i gn+1−k+i can be considered as a constant when the system is set

up. Therefore, the corresponding costs are tmt + 2tp. In the phase of data download, it contains the decryption and data
verification. Since we ignore the cost of the symmetric encryption algorithm, we only discuss data verification. With the

decrypted data m0, the user computes , and then verifies the integrity by checking whether Tm0 = Tm holds.
Thus, the cost of data download is te.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 246

2. Comparison of computational cost. In order to make a comparison, we list the computational costs of three schemes in Table
1. Note that, |Sall| and SDi| denote the number of encrypted data stored in the CSP and from the Di, respectively. l is the bit length
of short hash used in [8] and usually around 5 ∼ 20 bits.

6.1.2 Communication Overhead

In order to facilitate the analysis, we use |G| and |GT| to denote the bit length of an element in G and GT, respectively. |L|, |link|
and |i| denote the bit length of the data length Lm, the data link linkm and the domain identifier i, respectively.

1. Communication overhead of our scheme. When a user U in Di wants to upload data m, U first sends “uploadk(Lm,τm)” to Ai,
which costs |L| + 2|G| bits. If the duplicate is found, then Ai returns “duplicationkBm∗” with 2|G| bits in length to U. If the
duplicate is not found, then Ai sends “uploadk(i,Lm,τˆm)” with |i| + |L| + |G| bits in length to the CSP for the further inter-
deduplication. Then the CSP returns “duplicationklinkm∗kBm∗” with |link| + 2|G| bits in length to Ai when the duplicate is found.
Otherwise, the CSP returns “upload” to Ai. After the inter-deduplication, Ai either returns “duplicationkBm∗” with 2|G| bits in
length or directly forwards “upload” to U. If the received message is “upload”, then U sends the encrypted data (Bm,Cm) to Ai.
Except for the symmetric ciphertext Cm, the additional overhead is 2|G| bits. Then, Ai forwards (Bm,Cm) to the CSP to obtain the
corresponding link linkm, which costs |link| + 2|G| bits to transmit. If the received message is “duplicationkBm∗”, U does not
need to upload any encrypted data. Finally, when the duplicate is found in the intradeduplication, total overheads of data
upload require |L| + 4|G| bits. If the duplicate is found in the inter-deduplication, then totaloverheads are 7|G|+2|L|+|i|+|link|
bits. Inversely, when the duplicate is not found, total overheads are 7|G|+2|L|+|i|+|link| bits.

6.1.3 Storage Cost

In our scheme, after data upload, the user deletes the data m and just stores (Tm,ckm,labelm), which needs 2κ1 + |label| bits. After
the intra-deduplication, if the duplicate exists, then Ai does not need to store any data. Otherwise, Ai records (Tm,Bm,linkm) with
2|G|+|link|+κ1 bits in length. Similarly, if the duplication exists in the inter-deduplication, the CSP would not store any data.
Otherwise, the CSP stores the outsourced data (i,Lm,τˆm,Bm,Cm). Except for the symmetric ciphertext Cm, the additional storage
costs for the CSP are 3|G| + |L| + |i| bits.

6.2 Simulation analysis

In this section, we discuss the simulation analysis and give a comparison of three schemes. Specifically, we conduct
experiments with PBC [31] and OpenSSL [32] libraries running on a 2.6 GHzprocessor 2 GB-memory computing machine.

6.2.1 Simulation results

1. Computational cost. We depict the comparison of computational costs in Fig. 4. Specifically, Fig. 4(a)-4(e) show the variation
of operation cost in terms of k, n, ψ, and µ. Fig. 4(f)-4(h) show the variation of the duplicate search complexity in terms of total
stored data number |Sall| and the order of the DDT f (or disjoint subset number 2l in [8]).

From Fig. 4, we can see that the computational efficiency of our scheme is much better than the other two schemes for all
variables. The main reasons are two aspects: the efficiency of ciphertext calculations and the duplicate search complexity. On
the one hand, for ensuring that the outsourced data can be correctly decrypted by users with ownership, our scheme only
contains a constant number of ciphertexts, i.e., a symmetric ciphertext Cm and a key-encapsulated ciphertext Bm with two
elements in G. However, in the scheme [8], except for the symmetric ciphertext, the key-encapsulated ciphertexts

contain one element in GT and n elements in G, which increases linearly with n.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 247

Fig 4. Notification Alerts

Thus, our scheme can significantly reduce the computational costs of data encryption, as shown in Fig. 4(a)-4(d). Note that, in
the scheme [30], it directly uses the hash value of the data m as the main key to obtain the symmetric key. In other words, as
long as the user has h(m), the symmetric key selected by the initial uploader can be obtained correctly. Thus, this scheme
would not introduce a large number of additional ciphertexts as in the scheme [8]. However, it is clear that this scheme is not
resistant to brute-force attacks. On the other hand, in the intra-deduplication, our scheme constructs a hash table to find the
duplicate, where the search complexity is O(1). But the scheme [8] uses a binary search tree to store the tag, where the search
complexity is O(log2 |SDi|). For convenience, we directly set |SDi| = |Sall|/n. Obviously, the search complexity of our scheme is
more efficient than the scheme [8], as shown in Fig. 4(f). For the inter-deduplication, our scheme constructs the DDT based on

the B+ tree, where the search complexity is . The scheme [30] uses the binary search tree to find the duplicate,
where the search complexity is O(log2 |Sall|). However, the scheme [8] introduces a short hash to divide the set Sall into 2l

subsets, and thus the search complexity is sub-linear, i.e., . In general, the logarithmic search complexity is more
efficient than the sub-linear complexity, while the complexity of the B+ tree is more efficient than the binary search tree.
Therefore, the search complexity of our scheme is more efficient than the other two, as shown in Fig. 4(g) and 4(h).

For data download, the costs of our scheme and Jiang et al’s scheme [30] are less than the Shin’s scheme [8] for k, as shown

in Fig. 4(e). The reason is that our scheme achieves data verification by computing . However, the scheme
[8] needs to verify whether e(g,tm) = e(H(m∗),gxi) holds. Note that, the scheme [30] does not consider data verification. The
resulting costs are related to the recovery of the symmetric key.

Communication overhead. In Fig. 5, we plot the comparison of communication overheads in terms of k, n, ψ, and µ. It is shown
that our scheme significantly reduces communication overheads compared with the scheme [8]. Similar to the analysis of
computational cost, the main reason is that our scheme only sends a constant number of ciphertexts to the CSP. However, for
the scheme [8], the number of uploaded or downloaded ciphertexts is linear with n, which will cause more communication
overheads, especially when n increases, as shown in Fig. 5(b). The communication overhead of our scheme is slightly larger
than the scheme [30]. The reason is that we introduce the agent between users and the CSP to perform the deduplication and
forward the received messages to the CSP or users, which will increase communication overheads

6.2.2. Storage cost.

Fig. 6 shows the comparison of storage costs for these three schemes in terms of k, n, ψ, and µ. It is shown that our scheme
reduces storage costs compared with the scheme [8]. The main reason is that the number of ciphertexts generated in our
scheme is constant. Note that for the convenience of comparison, we summarize the storage cost of Ai to the CSP for analysis.
Due to the introduction of the agent, the storage cost of our scheme is slightly larger than the scheme [30], as shown in Fig.
6(b)6(d). But, this process helps greatly improve the efficiency of the duplicate search if the data come from the same domain,
as shown in Fig. 4. More importantly, the agent can maintain a ratinglimiting strategy to resist the online brute-force attacks
launched by malicious users. From the above analyses, our scheme is indeed efficient in terms of computational,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 248

communication and storage overheads compared with the up-to-date works, which shows the significance and practical
potential of our scheme to support big data.

Fig. 5: The comparison of communication overhead.

7. RELATED WORK: Secure data deduplication technique, as it can eliminate redundant data while achieving data
confidentiality, has been widely developed by the research community [12]. The convergent encryption (CE) was the first
solution that can achieve deduplication over encrypted data [3], [33]. In the CE, data is encrypted by its hash value and the
corresponding tag is produced by hashing the generated ciphertext. Clearly, when different users independently encrypt the
same data, they will generate the same ciphertexts and tags which can be easily deduplicated. However, the precise security
guarantee of the CE was never fully proven or even stated. After that, Bellare et al. [4] formalized the CE a new cryptographic
primitive.

8. CONCLUSION AND FUTURE ENHANCEMENT :

In this paper, we have proposed an efficient and privacy-preserving big data deduplication scheme for a two-level multi-
domain architecture. Specifically, our scheme can achieve the semantic security of encrypted data while ensuring that the
outsourced encrypted data can be correctly decrypted by users with ownership by generating a constant number of
ciphertexts. Besides, only the CSP (the agent) can decide whether two given random inter-tags from different domains (intra-
tags from the same domain) correspond to the same data or not, which minimizes the disclosure of the message equality
information. Detailed security analyses demonstrate that our scheme can achieve data confidentiality and data integrity while
resisting brute-force attacks. Furthermore, extensive performance evaluations show that our scheme outperforms the existing
competing schemes, especially the computational cost and the time complexity of the duplicate search.

Future research includes extending the proposed scheme to achieve the ownership management and revocation because data
modification or deletion operations are often requested by users. Moreover, since data deduplication techniques keep only one
copy of the data, outsourced data after deduplication is vulnerable to data loss or corruption. Accordingly, future research
agenda will also include extending the proposed scheme to address the reliability of outsourced data.

REFERENCES

[1] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication,” TOS, vol. 7, no. 4, pp. 14:1–14:20, 2012.

[2] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud services: Deduplication in cloud storage,” IEEE Security
& Privacy, vol. 8, no. 6, pp. 40–47, 2010.

[3] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer, “Reclaiming space from duplicate files in a serverless
distributed file system,” in ICDCS, 2002, pp. 617–624.

[4] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryption and secure deduplication,” in Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, 2013, pp. 296–312.

[5] S. Keelveedhi, M. Bellare, and T. Ristenpart, “Dupless: Server-aided encryption for deduplicated storage,” in Proceedings of
the 22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013, 2013, pp. 179–194.

[6] M. Miao, J. Wang, H. Li, and X. Chen, “Secure multi-server-aided data deduplication in cloud computing,” Pervasive and
Mobile Computing, vol. 24, pp. 129–137, 2015.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 249

[7] Y. Duan, “Distributed key generation for encrypted deduplication: Achieving the strongest privacy,” in Proceedings of the
6th edition of the ACM Workshop on Cloud Computing Security, CCSW ’14, Scottsdale, Arizona, USA, November 7, 2014,
2014, pp. 57–68.

[8] Y. Shin, D. Koo, J. Yun, and J. Hur, “Decentralized server-aided encryption for secure deduplication in cloud storage,” IEEE
Transactions on Services Computing, vol. PP, no. 99, pp. 1–1, 2017.

