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Abstract - In the last two years the electric vehicle 
market has boomed exponentially. The turn of the decade 
has produced some of the most advanced vehicles which 
remove dependence on fossil fuels and mainly derive their 
power from rechargeable batteries. These technologies 
enable faster speeds, higher efficiencies, and a more 
environmentally friendly transportation system. Coupling 
the battery with a means of accessing the planet's most 
available energy supply, solar radiation, including solar 
panels, has helped to expand the range of such electric cars.  
Such hybrid vehicles cannot actually mean everyday 
commuter vehicles or road cars. The range of electric cars is  
incredibly large, ranging from commercial vehicles for 
children to multi-purpose vehicles, to wheelchairs for the 
otherwise competent. In this review paper, we will be 
reviewing various technologies with respect to making an 
automated wheelchair that can not only make it user 
friendly, but also, we will be exploring various methods and  
techniques wherein we can make the wheelchair cost 
friendly as well. 
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1. INTRODUCTION  
 
For a developing nation such as India, where the economy 
is still growing, essential items have to be inexpensive to 
those in need. In today's busy world where people don't 
have enough time for anything, the independence of the 
elderly and physically disabled people is very necessary. 
For the older generations as well as the physically 
disabled, wheelchairs are extremely necessary and their 
demand has risen over the past few decades due to the 
efficacy of the treatment, which increases the quality of 
life. Nonetheless, wheelchairs are not accessible in India 
due to high import duties and high costs for most of those 
who need it. Simple wheelchairs are inadequate for some 
people, and therefore require electric wheelchairs, which 
appear to be much costlier. Automated wheelchairs that 
are interfaced with sensors and a unit for data processing 
are classified as smart wheelchairs. Assistive robotics 

significantly strengthens the lives of those mentally 
disabled. In recent years, robots have available a wide 
variety of assistive and guidance systems to make their 
lives less complex and motile. Such robots are extremely 
powerful and allow the consumer to move around easily. 
Especially for individuals with particular conditions and 
illnesses, there are multiple management mechanisms that 
are evolving and improving in recent times. Developed 
technologies are strongly effective in replacing the 
existing, outdated systems. This innovative approach is 
beneficial for people with disabilities who can't move their 
wheelchair by themselves. A wheelchair model acts as a 
robot model, which comprises an in-built microcontroller 
These wheelchairs are built so as to be able to maneuverer 
independently without additional assistance. Via this 
function patients can make their wheelchair movements 
simpler on their own.The thought of interfacing machines 
with minds has always been very intriguing. The recent 
advances in the fields of neuroscience and engineering are 
making this idea a reality. This might potentially allow us 
to augment human physical and mental capabilities. We 
can use the neural signals from the brain activity can be 
used affect their environment. The field of BCI (Brain 
computer interface) can enable patients suffering with 
quadriplegia and stroke patients to control prosthetic 
devices for walking or controlling their environment as it 
provides them means for hands free control of various 
electrical devices and have very significant applications in 
the operation of neuroprostheses.  
 
Here we are addressing various technologies that can be 
used to build a cheap automatic wheelchair in order to 
make it affordable and available to the general population 
of the country. What we've found is that most wheelchairs 
have only manual mobility. Motorized wheelchairs are 
also available, but these are very expensive. It also 
evaluates the BCIs and its applications and limitations 
when it comes to developing an automated 
 

2.  THEORY AND CONCEPTS 
 
Brain-computer interfaces (BCI) are computer-based 
systems that allow communication between the brain and 
various machines [2].  They acquire signals from the brain 
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using electrodes that may be placed on the skull or 
intracranially, process the signal and convert them into 
commands that may control various devices. The BCI 
systems use and measure the signals generated by the CNS 
by placing electrodes on scalp or cortex region of the brain 
and not the output from the peripheral nervous system or 
the muscles. The most popular principle of a brain 
computer interface control is that the individual can learn 
to voluntarily change the neural activity in their brain 
which is then acquired by the electrodes placed. The user 
is trained to come up with brain signal and therefore the 
BCI system is trained to decode the signal and translate 
them into commands which relies on the user’s intention 
and control the output device. There are different types of 
signals based on the source of the signal that can be used 
in BCI systems. 
 
The most commonly used signals are the neuronal 
postsynaptic membrane polarity changes. The scalp EEG is 
extensively used in BCIs. This is extremely safe, easy and 
not expensive to acquire. The most important problem of 
scalp EEG is that the signal gets attenuated in the process 
of passing through the dural region, skull and scalp 
tissues. This might lead to the loss of a lot of important 
information. 

 

2. 1 ELEMENTS OF A BCI 
 
The BCI system consists of 4 main components [30]. These 
components are administered by a protocol that defines 
all the minute characteristics pertaining to the BCI system 
including details of the signal processing, timings of the 
operation, the nature of the device commands and the 
performance. The operating protocol enables the BCI 
system to be flexible and adapt itself according to the 
user’s needs. 

1. Signal acquisition: This involves measurement of 
the brain signals using either a scalp or an intracranial 
sensor. These signals are filtered and amplified so that 
they are apt for signal processing. These signals are 
converted into a digital form so that they can be 
transmitted to a computer.  
 

2.     Feature extraction: The digital signals obtained 
are analysed to extract relevant characteristics of the 
signal and converting them into form that can control 
prostheses. These features must have very high 
correlation with the user’s intent. 
  

3.     Translation algorithm: An algorithm converts the 
extracted characteristics into instructions that can control 
various output devices. The algorithm must be dynamic so 
that it can adapt to changes in the signal characteristics 
and the subject’s intent 

 
4.     Output devices: The output instructions from the 

algorithm control the output devices and perform 

functions like letter choice, robotic arm control, cursor 
control, etc. The device output provides feedback to the 
subject, which closes the loop. 

 
The components of the BCI system are shown in the 
Figure1. The electrical signals from the brain activity are 
read by electrodes which can be placed on the scalp, on 
the cortex or within the brain which are amplified and 
converted into a digital form. Significant signal 
characteristics are translated into instructions that can 
control prostheses. Feedback from the device allows the 
user to adapt the brain signals in order to improve the 
performance of the BCI system. 

 
 
2.2 NON-INVASIVE BCI SYSTEMS 

Non-invasive scalp EEG is the most dominant methodology 
used in the analysis of brain signals and its performance in 
the real time interactions of humans with their 
surroundings. There are other non-invasive brain activity 
monitoring methods which include Infrared spectroscopy 
(fNIR), Functional Magnetic resonance Imaging (fMRI), 
position emission tomography (PET) and 
magnetoencephalography (MEG). Among all these, EEG is 
the only one that uses sensors that are portable and can be 
used for reading signals the user is moving [25]. It is also 
superior to the other modalities in terms of resolution and 
the areal of the brain that can be monitored. 

Even though EEG has so many applications in the field of 
medicine, it is used much more in the clinical field than in 
daily life applications as it is considered to be too prone to 
noise [24]. As the current EEG technology is not 
sophisticated the researchers are also not very confident 
about the signal acquires and the sources of the signal. The 
current EEG monitoring practice has a complex procedure 
which involves the preparation of the skin, application of 
gel electrode and attaching a lot of sensors. The users don’t 
have enough knowledge to handle these sensors on a day 
to day basis. Therefore, sizeable efforts are necessary to 
bridge this gap. 

A few commercial EEG systems have been developed [14]-
[22] that are in used in investigations regarding the BCI 
systems and in gaming applications that use BCI 
technology. 

Figure 1: Elements of a brain computer interface  

Figure 1: Elements of a brain computer 

interface 
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To make this system more efficient, we need better signal 
acquisition hardware, we must be able to validate the BCI 
system and the end product must be reliable.  

2.2.1 Signal generation 

The brain activity evolves along with age and maturity of 
the human brain. This is also affected by the number of 
personal attributes very heavily. It would be very useful if 
we could monitor the brain activity on a day to day level to 
study our cognitive evolution. But due to the impractical 
procedure of the current EEG technology it is not possible 
to monitor our brain activity. But having sophisticated EEG 
systems will enable us to monitor large populations who 
have diverse personal traits and create a large database. 

An EG is the signal obtained due to several simultaneous 
neural activities occurring in the brain. They are affected 
by the current mental state of the user and several external 
inputs and the signals which are an input or an output to 
the internal organs of the user [26]. Even having a person’s 
eyes closed or open will completely result in a different 
EEG signature [27]. Therefore, understanding the current 
mental status of the user and considering contextual 
information plays a key role in the development of BCI 
systems using an EEG signal. 

Surface EEG is not capable of capturing single neuron 
activity. This represents a summation of multiple neuron 
activity. The tissues present between the EEG signal and 
the source of the brain activity attenuates and smears the 
brain signal. This is mainly because of the difference in the 
conductive properties of the skin, skull, the cerebrospinal 
fluid (CSF), the dura and pia matter of the brain [28]. 
Understanding their properties is very essential when we 
are thinking of building a BCI system that lasts over a 
lifespan. 

2.2.2 Signal Acquisition 

The EEG design used in clinical applications is the use of 
electrodes are (Ag / AgCl) placed on the scalp using 
electrolytic gel[32]. The electrolytic gel closes the gap 
between the skull and the electrodes for the ionic current 
flow and it increases the adhesion of the electrodes to the 
scalp. This model is featured in Figure 2A. 

But this setup is very complicated and involves a lengthy 
process of preparing the skin and application of the gel. 
The placement of the electrodes is also very critical, and 
the user might not have the knowledge to perform this 
process. 

Therefore, the recent developments focus on the 
development of sensors that don’t use conductive gel. 
These are called dry electrodes and they have pins that 
penetrate the hairy regions [22]. They contain electrodes 
which are Ag/AgCl or gold plated.  These electrodes can be 
used until the conductive layer fades [33].  But the 
stabilization time needed for this type of electrode is larger. 
This system is more prone to noise and decreases the 
quality of the signal and is comparatively more 
fragile.  This system is represented in Figure 2B. 

2.2.3 Brain signal Analysis 

The EEG signal undergoes several steps before its analysed 
and we discussed in an earlier section.  During signal pre-
processing the recorded signals are re-referenced, the 
signals undergo band-pass filtering and are resampled and 
epoched. The clean EEG segments are selected. 

The extraction can be performed manually in the clinical 
environment but is impractical if we are extending its 
applications for a day to day use. For real time applications 
we need methods that can extract features from the EEG 
signal. This is considered as a part of the artefact handling 
process. 

Artifact includes all the signals that are present in the EEG 
signal but Is not a part of the brain signal. There are 
different classes of artifact [24][29]. 

1.    Environmental Artifacts: This includes 
interference from the power lines present in the 
environment or EMI produced by the body itself. 

2.    EEG acquiring apparatus Artifacts: This arises 
due to the interference of the circuitry present in the EEG 
systems. 

3.    Artifacts arising from inappropriate use of the EEG 
system: This is due to the improper usage of the EEG 
system leading to measurement error. 

4.    Physiological Artifacts: This is due to the distortions 
of the EEG because of the other electrical signals generated 
by the human body. 
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5.    Motion Artifacts: This occurs due to the change in 
geometric measurement, coupling between the user’s skin 
and the sensor and deformation of the user’s tissue. 

All these can be avoided using artifact reduction methods. 
This involves identifying the artifact components in the 
signal and isolating the original signal from the obtained 
signal. The features are then extracted from the clean EEG 
signal. 

2.3 BCI SYSTEMS IN WHEELCHAIRS 

Brain-computer interfaces (BCIs) based on 
electroencephalograms (EEG) have recently been 
encouraging the production and implementation of BCI 
technologies, as they are compact, simple, safe, and 
inexpensive. A major application of EEG-based BCI is 
the wheelchair control which has received considerable 
attention. 

Given below are some examples of the studies that were 
conducted by various people on brain-controlled 
wheelchair : 

Study 1- Tanaka et al developed a brain-controlled 
wheelchair, in which the patient can control the 
wheelchair movement by doing motor imaging. [3] 

Study 2- In this study, a wheelchair has been proposed 
using BCI. The consumer guided the wheelchair 's left-
turning, right-turning, and forward movements by 
imaging the left-hand clenching, gripping the right 
hand, and pushing on both feet, respectively. [4] 

Study 3- In this study, a hybrid BCI incorporating Motor 
Image (MI) and P300 was used to control wheelchair 
speed and direction. In brief, the user conducted left -or 
right-hand Motor Image to create direction control 
signals and changed the wheelchair speed with foot 
imagery or by relying on a blinking button. [5] 

Study 4- Diez et al built a BCI wheelchair based on 
visual-evoked steady-state (SSVEP) potentials, in which 
four control commands (go ahead, turn left / right, and 
stop) were available [6]. 

There are three obstacles with a brain-controlled 
wheelchair: [7]-[9] 

The control of the wheelchair is multi objective 
including functions of start and stop, control of course 
and control of speed. The task of generating various 
control signals is difficult for an EEG-based BCI. 
Although we may receive several control commands 
using a P300 or SSVEP, it takes time to generate an 
effective control command 

·The efficiency of a BCI is user dependent. For example, 
a lot of users are unable to conduct the Motor Image 
required to generate direction control signals. 

·Controlling a wheelchair for a long period of time will 
create a substantial mental burden for the user, 
particularly for people with disabilities. 
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Figure 2A: Electrodes using conductive gel                                             

Figure 2B: Dry electrodes with pins                                                     
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Such problems can be resolved using an automatic form 
of navigation. The autonomous navigation system, 
however, cannot perform any of the control functions. 
The autonomous navigation system for example cannot 
identify the user's desired destination. Therefore, a 
human machine interface (HMI) is required to 
communicate the wishes of the user to the navigation 
device. In seriously disabled individuals, such as 
patients with amyotrophic lateral sclerosis (ALS), there 
are obstacles to using a typical HMI, such as usage of a 
keyboard. Thus, BCI technology could be an alternate 
choice [10]. 

Shared management methods for wheelchairs were 
developed over the last few years. Such strategies 
leverage the power of the human and autonomous 
navigation system by allowing various elements of the 
system to be managed in circumstances involving 
teamwork [11]. 

Example of an study wherein both autonomous 
navigation systems as well as brain controlled 
wheelchair techniques are used: 

Milla´n et al presented a mutual control BCI wheelchair 
system in which steering commands were obtained by 
constantly observing the brain data of the patient and 
data from a laser range finder (LRF); a background 
filter focused on environmental information was 
developed to filter incorrect BCI commands[12]. Milla'n 
et al. have suggested another form of joint wheelchair 
control . In particular, a dynamic system was designed 
for navigation that could generate naturally smooth 
trajectories by integrating the user's BCI commands, 
and vision sensor obstacle information. The BCI 
commands were received from motor imageries of the 
user for these two common control systems. 

The key benefits of this method are – 

1.       No environmental information is needed a priori. 

2.       Trajectories are not set and calculated in real time. 

3.       Both systems will automatically avoid obstacles if 
necessary 

The disadvantages of this method are – 

1.       To reach a destination, a large number of BCI 
commands were required that could exhaust the user. 

2.       The wheelchair could not be halted in free space 
by the user; rather, the wheelchair would only halt until 
it docked at a possible goal. 

In this review paper, we will be reviewing the technique 
wherein they have created an adaptive wheelchair that 
integrates a BCI based on MI or P300 with an 
autonomous navigation system, in which users choose 
one of the candidate destinations using the BCI based 
on MI or P300s. The autonomous navigation system 
designs a route, and then drives the wheelchair to the 
destination, based on the direction decided and the 
wheelchair's current position. Throughout the 

navigation time, the user does not have to pay attention 
to the control; therefore, the user's workload is 
significantly eased. Since the candidate destinations and 
paths are created dynamically based on the current 
environment observed by two webcams, our program is 
sensitive to environmental changes (e.g. newly installed 
furniture). The user can also request a stop order via 
the BCI. Here, we will be giving more importance to the 
BCI techniques used. (W) 

3.  AUTONOMOUS NAVIGATION SYSTEM 

The wheelchair system consists of the following sensors 
[1]: 

·A Laser rangefinder which is placed on a steel prop 

·Two encoders on the central wheels 

·An ultrasonic sensor array which are fixed to the 
wheelchair 

A 2-D vector map is manually made, gives the 
coordinate information for the wheelchair and obstacle 
localisations. Most of the distance measurement devices 
like the laser rangefinder and sonars can only detect 
limited distances[23]. This will pose a disadvantage 
when it comes to detecting obstacles of different 
heights. So, two webcams are places on the walls with 
opposite orientation. [31][32] 

Once the system gets activated, the obstacle map is 
updated. Once the calibration is performed based on a 
homography technique and a homography matrix is 
obtained the object localization process is performed 
using threshold segmentation method and 
morphological operations. 

An optimal path is selected from all the other options 
for the paths in order to minimize the time taken for 
navigation. After this is obtained the path is calculated 
and is employed as the feedback of a PID tracking 
algorithm which gives the reference angular speed. 
Once this speed is obtained the proportional-integral-
derivative algorithm drives the wheelchair. 

4. BRAIN COMPUTER INTERFACE 

A BCI is employed during wheelchair motion to pick a 
destination and issue a stop command. The user can 
pick between two types of BCI systems [1] 

MI-based BCI: This is usually for patients with visual 
impairment 
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P300-based BCI: this is for users with regular 
vision

 

 

 

 

4.1 EEG Data Acquisition 

An EEG cap is used to obtain the EEG signals from the 
brain by using fifteen electrodes. The placement of 
electrodes is shown in figure 3 [1] 

These signals are amplified and converted into digital 
signals with a sampling frequency of 250Hz and is 
passed through a band pass filter. 

4.2 Motor Imagery based BCI 

Destination Selection: In the graphical user interface 
shown in the figure 4, there are two vertical bars on 
either side which are used for visual feedback. When n 
MI for left or right hand is detected by the BCI, the 
corresponding bar is filled with the colour red. The 
amount of this bar that has been filled is proportional to 
the output of the motor imagery detection. There are 
two horizontal bars which show the threshold of the 
detection.

 

 

 

 

Stop command: If the user gives a left-hand command 
for three seconds, then they can issue a stop instruction. 
Once this instruction is issued, the wheelchair stops, 
and the user interface shifts to its initial state. The user 
can pick another destination to start the wheelchair. 

      Motor Imagery Detection: to detect any MI, the 
system records the EEG signal for    1200 ms and that 
signal is spatially filtered. A feature vector is extracted 
and then is sent to a support vector machine. A 
predicted class is used to determine the left/ right hand 
MI. 

4.3 BCI that uses P300 

Destination Selection: This is carried out in two steps 
[1]. [i] the user thinks of the number corresponding to 
the location that they desire and in 20secs [ii] the P300 
graphical user interface appears, as shown in figure 5. 
The numbers on the interface correspond to the 
destinations. The user determines the destination by 
focussing on the number on the interface. Once the 
destination is selected the user should focus on the o/s 
button to validate the destination selection. Once this is 
selected, the wheelchair automatically 
moves.

 

 

 

 

Stop command: The P300 detection is performed every 
1.2 sec once the wheelchair is in motion. If O/S button is 
detected by the P300, the system issues a stop 
command to the wheelchair. 

P300 Detection: The EEG signals are bandpass-filtered 
and sampled. EEG signals are recorded from each 
channel to obtain a vector. This corresponds to a button 
in the interface. 

5. RESULTS 

When subjects were taken to a room with a few pieces 
of furniture and were asked to move around[1]. The 
output is shown in figure. The metrics that were 
involved in the evaluation of the BCI systems 
were[34][35]: 

in selecting the destination, including the incorrect ones 

Figure 3:                                                                                            

EEG Cap with the 15 Electrodes 

Figure 4:                                                                                            

GUI used in MI based BCI 

Figure 5:                                                                                            

GUI used in P300 based BCI 

 

Concentration Time: The amount of time the user spent 
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·Concentration time for each selection: The amount of 
time the user spends in selecting anything in a MI-based 
BCI. 

·False destination selection: The wring selections of 
destinations in the BCI 

·Response time: it is the time taken by the system to 
stop the wheelchair after the user sends a stop 
command 

·Success Rate: It is the ratio of the number of stops that 
were successful to the total number of stops 

·Error distance: The distance between the centre of the 
wheelchair and the stop area. 

False activation rate: The number of times the 
wheelchair stopped when the user did not intend it to 
per minute. 

 

 

 

 

 

 

6. CONCLUSIONS 

In this paper, we present an intelligent wheelchair that 
combines a Motor Imagery- or P300-based BCI and an 
automated navigation system. Two experiments were 
conducted wherein one experiment was conducted 
based on Motor Imagery and the other experiment was 
conducted based on P300. The results that were 
obtained from conducting these two experiments 
showed the effectiveness of the system that was built. 
This wheelchair system proved to have various 
advantages: 

1.     The candidate destinations and paths are created 
automatically based on the actual current climate, 
which means that our system will adjust to 
environmental changes. 

2.      Once the user selects a destination with the BCI 
our wheelchair will automatically navigate to it. No 
additional mental commands need to be issued by the 
user. Thus, the user's workload is significantly eased. 

3.     The user can issue a stop command via the BCI 
during wheelchair motion. 

The technology used to build this system mentioned in 
the paper provides the users with a direct 
communication interface and allows users to determine 
destinations without manual help. Therefore, solving 
the drawbacks that previously made devices had 
thrown at them. The system examined in this paper can 
be seen as an expansion of an already existing 
framework [13]. Why this method operates is that a 
destination was chosen by the user using a BCI. The 
wheelchair, which had been operated by the automated 
navigation system, navigated to the destination without 
any user commands. The candidate destinations and 
paths were predefined, however, which meant that a 
technician would need to redefine the candidate 
destinations and paths after a change to the atmosphere 
had occurred. This difficulty was resolved in our 
program by the collection of nominee destinations and 
route preparation prior to wheelchair service. Our 
method's only drawback is that our wheelchair only fits 
a room fitted with webcams 

7. FUTURE SCOPE 

The intensity to extend the system to allow the 
wheelchair to move in more complex indoor or outdoor 
environments without using webcams in the future 
study. Previous studies have shown that some people 
with disabilities can perform similarly when using 
either P300-or Motor Imagery-based BCI to healthy 
people. We also need to improve the system for 
severely disabled people in future, keeping their 
limitations in mind. 

 

 

 

Figure 6A: Results obtained from MI based BCI 

systems 

 

Figure 6B: Results obtained from P300 based 

BCI systems 
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