
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2716

A Survey on Docker Container and its Use Cases

Bellishree P1, Dr. Deepamala. N 2

1 Department of CSE, RVCE, Bengaluru
2Associate Professor, Department of CSE, RVCE, Bengaluru

---***--

Abstract - Docker is an open platform used for

development, shipping, and running applications. It

facilitates in delivering software quickly a

s it separates applications from the infrastructure. Docker

methodologies promote quick shipping, testing, and

deploying code anywhere, which reduces the delay between

code development and its deployment in production. It has a

wider scope of benefits for both Developers and System

Administrators by allowing Developers to write code without

having to worry about the system, that it will ultimately be

running on. Also, it potentially reduces the number of

systems and offers flexibility for the operations staff. This

paper discusses the basics of Docker containers as well as

related work that is being carried out in this area. Further,

the paper includes key use cases along with the benefits and

challenges involved in its usage.

Keywords - Docker; Container; Virtual Machine; Docker

Image; Docker use case

I. INTRODUCTION

Years ago, before Docker containers came into existence,

big companies like Walmart, Target, Chase Bank that relied

on technology traditionally used servers and added many

of them which lead to over-allocation, this was to handle

the increasing number of requests from the users. The

downside of over-allocating severs was that it was

extremely expensive and failing to scale well the servers

would crash and burn, and the business would be dead.

After a few years, the company named VMware came up

with the concept called as Virtualization that allowed to

run multiple operating systems on the same host which

essentially meant running any application in isolation on

the same server and same infrastructure, so it seemed like

running an entirely separate computer on the same

computer which was a game-changer for the many

industries.

Although the concept of Virtualization came with

privileges, it was very expensive. To begin with, there are

multiple kernels for each guest operating system that will

run on the infrastructure, besides, for each guest operating

system added to the infrastructure, resources must be

assigned. Further the reason behind virtualization being

expensive is that even though there is no physical

hardware there is virtual hardware that takes up

resources, the guest operating system space, and the RAM

allocation required for this operating system [6].

Advancing towards modern-day technology known as

Containerization which is characterized as a type of

operating system (OS) virtualization, employing which

applications are run in isolated user spaces, using the same

shared OS. Dockers being a containerization platform

combines all the application and its dependencies in the

form of Docker Container to ensure that the application

works seamlessly in any environment. Docker provides far

denser server consolidation than one can get with VMs,

with the capability to share extra usable memory across

the instances.[9] The advantages are that it facilitates

Rapid Deployment; It is fast, lightweight as it doesn’t boot a

separate OS per VM making it fast to start/stop, it requires

less disk space due to sharing of common layers across

images, and due to the image layering incremental

deployments of new app versions are smaller and

therefore faster than VMs, it shares a kernel across

containers and therefore uses less memory. It is portable

as Docker files can be used to instantaneously configure

any machine. Dockers coming with no hypervisor come as

a greater advantage as it does not need a separate kernel

and it still utilizes the same resources as the host OS and it

exploits namespaces and control groups to tightly use

these resources more efficiently.

II. LITERATURE SURVEY

The paper titled “OpenStack and Docker: building a

high-performance IaaS platform for interactive social

media applications” [1] describes about the Nova-Docker

plugin which enables the fast and efficient provisioning of

computing resources which can run as a Hypervisor that

helps to manage the growth of application users. This is

built using an OpenStack IaaS which enables to control

data centres for cloud computing. OpenStack standard

architecture contains three important roles: Nova, that

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2717

manages the computation, storage resources are managed

by Cinder. The entire networking resources are managed

by Neutron across multiple data centre. NUBOMEDIA is

another approach which enables (PaaS) interactive social

media through cloud. The major technologies adopted are

Kurento Media Server (KMS) which provides interactive

communications through WebRTC media server.

OpenBaton which manages the lifecycle of media server

capabilities using Docker containers. In order to host

applications which consumes media server capabilities,

OpenShift Origin is enabled. Developers and

Administrators are interested more in Docker container

than Kernel-based Virtual machine mainly for its Fast Boot

time, Direct Access to containers, it can be run on any

hardware that supports Linux based OS. Docker containers

are lightweight, minimizing the bandwidth needed for

deployment using required resources [8].

The paper titled “Evaluation of Docker as Edge

Computing Platform” [2] describes about how to

overcome problems such as High latency, network

bottleneck and network congestion. We can achieve this

from moving centralized to decentralized paradigm, Edge

computing will be able to reduce application response time

for better user experience. Edge computing is enabled with

Docker, a platform of container-based technology that has

more advantages over VM based Edge computing. This

paper mainly evaluates the fundamental requirement for

EC that are 1) Deployment and Termination which mainly

describes the platform that provides an easy way to

manage, install and configure services to deploy the low-

end devices. 2) Resource and Service Management that

allows users to use the services even when the resources

are out of limit. 3) Fault Tolerance which relies on the High

availability and reliability to the user. 4) Caching allows the

user to experience better performance where Docker

images can cache at the Edge. One such that enables

Docker concept which was applied on Hadoop Streaming

which reduces the setup time and configuration errors.

Overall, there are areas of improvement yet, it provides

elasticity and good performance.

The paper titled “Model-Driven Management of Docker

Containers” [3] focuses on management of docker

containers, mainly where users finds low-level system

issues and it describes how modelling Docker containers

helps to achieve sustainable deployment and management

of Docker containers. Indeed, Docker system has more

advantages than cloud-computing like Azure, Amazon; the

Docker containers attains drawbacks in synchronizing

between deployed and designed containers. This paper

provides a model driven approach to manage not just to

design the containers architecture but also represents the

deployed containers in target systems. The motivation for

this model-driven approach is that present docker

containers lacks verification and resource management.

The overview of the architecture described in this paper

tells us about the three components Docker Model,

Connector and Execution Environment. The abstraction of

the containers is given by Docker Model. Connector

provides the link between Docker model and Execution

environment, which provides tools to operate Docker

model efficiently by generating certain artifacts with

regards to changes in Execution environment. This paper

has presented a model-driven approach for verification

and synchronization and its future work will investigate

atomic changes performed in managed containers

architecture.

The paper titled “Docker container-based analytics at

IoT edge” [4] deals with internet connecting devices

which use sensors and eventually generate high load of

data. This becomes a challenging task to compute and

process the data. In a workaround, this paper mainly

describes about simplifying deployment of application at

IoT end using Docker- lightweight virtualization

mechanism. The research mainly depicts the use case for

the video surveillance feed established in UK in order to

analyse and detect the incidents that are about to occur

using Deep learning. The implementation for the above use

case, mainly involves components like Raspberry Pi 3

which is used as a gateway and obtains the video feed from

the CCTV. Docker Swarm is used to orchestrate the frames

obtained in the surveillance and multiple deep learning

frameworks are used to analyse the feed and MQTT client

is used to notify the cloud-based servers about the

occurrence of thread in the frames. This implementation

also sets a benchmark, in order to achieve efficient

processing high resolution frames. This study shows Deep

learning can be incorporated with Docker containers on

single based computers which gives negligible overhead

CPU processing when compared to Bare metal deployment.

The paper titled “Workload-aware Resource

Management for Energy Efficient Heterogeneous

Docker Containers” [5] propose Workload aware Energy

Efficient Container (WEEC) brokering system to align with

energy consumed by running container applications in

multiple cloud servers. The proposed system shows how

efficiently energy consumption can be reduced. Basically,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2718

the system classifies input requests based on the

containers utilization pattern of the resources into multiple

server racks. The WEEC brokering system mainly

comprises of 4 sub-components 1) Power Consumption

Per Application (ppA) Table Manager which is responsible

for quantifying the initial energy efficiency consumed by

the heterogenous server in containers. 2) Exponential

Weighted Moving Average (EWMA) predicts the workload

for the future demands of input requests. 3) Dynamic Right

Sizing (DRS) helps to manage the number of active servers.

4) Request Allocation Manager manages allocation of input

request to each specified server in Docker containers. The

study sets a benchmark by measuring power and

performance of several heterogeneity Docker containers

using benchmark applications with power measuring

devices called Yocto-Watt.

III. KEY DOCKER USECASES [10]

A. Simplifying Configuration - This is a basic use case;

the Docker configurations can be used several times in

a diversity of environments. VMs hold a plus when it

comes to running any platform with its configurations,

the same is included by the Dockers, but without any

Virtual Machine overhead, and allows to put into the

code your configurations and environment and deploy

the code. The infrastructure requirements are

disassociated from the application environment. When

it comes to the real-life use case, it enables in

accelerating the project setup in the organizations by

allowing them to dive into development directly by

skipping the repetitive job of environment settings and

configuration procedures.

B. Code Pipeline Management - The prior use case

majorly influences the code pipeline management. By

the time the code that is written in a developer

environment passes through various stages(each of

different platforms/environments) and approaches

the production stage, a few minor differences could be

observed; However, Dockers provide a consistent

environment along all the stages from development to

production, facilitating an easy development and

deployment pipeline. Also, the stable nature of the

Docker image and the ease with which it can be started

can add up in achieving the aforementioned pipeline

management.

C. Docker for Development Productivity - Docker

facilitates achieving the 2 goals in a developer

environment - First is to keep a developer close to

production, this is made achievable by the Docker as it

has no or low overhead when it comes to working

remotely. The second is to have a development

environment active for interactive use; Docker

facilitates this by making the application code

accessible to the container from the container's host

OS by its shared volumes. This fetches benefits like -

enabling the developer to modify the source code from

the platform of his choice and also observe the same.

D. Multi-Tenancy - Docker helps to prevent major

application rewrites and hence is used in multi-tenant

applications. Multi-tenant applications' codebases are

considerably more complex, rigid, and obstinate to

manage. Redesigning an application consumes a

surplus of time and money. Docker usage eases the

creation of confined environments to running multiple

instances of applications for each tenant and makes

the process economical. The easy-to use API provided

by the Docker’s enables to spin up containers

programmatically.

E. Debugging Capabilities - Docker provides various

tools that work skilfully with containers concept. To

name a few of its provisions, one being the ability to

checkpoint containers and its versions, to differentiate

two containers, hence readily fixing applications

whenever necessary.

F. Better disaster recovery - A Docker image, alias

snapshot, can be backed up at a certain point in time

and retrieved to overcome any emergency issues. With

Docker, a file can be replicated to new, different

hardware. Docker image allows switching between

the two different versions of the same software.

G. Improvement in the adoption of DevOps - DevOps

community has developed bases from Docker, to

standardize contained deployment. CI/CD determines

the correlation linking the Docker and DevOps. Docker

holds consistency among the testing environment and

the production environment. Docker systematizes the

configuration interface and simplifies the machine

setup. Docker can be employed to introduce

improvements in the DevOps of the company.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2719

H. Rapid Deployment - Before Virtual Machines, the

creation of new hardware resources took a days-

together worth of task, which was later reduced to

only a few minutes by Virtualization. On the other

hand, Docker further reduces it to seconds by

supporting just the creation of a container for the

process, without the need of booting up an OS. It

facilitates creating and destroying resources having to

not despair about the cost of bringing it up again. The

reduction in the cost of bringing up a new instance

permits a more dynamic way of resource allocation.

IV. DOCKER USAGE

A. WHEN TO USE?

i. Discovering the latest technologies: Docker

provides a disposable and isolated environment in

order to begin with a new tool even without

having to spend much time on installations and

configurations. Several projects maintain docker

images with the applications previously installed

and configured.

ii. Basic use cases: Docker Hub is a registry service

on the cloud which sanctions to download Docker

images built by other communities, this service

provides a good solution for pulling images for

either Basic or Standard application.

iii. App Isolation: Managing each application

component by keeping it in a separate container

will discard dependencies when running various

applications on a distinct server.

iv. Developer Teams: Docker provides a close match

between the local development environment and

production environment for developers working

in a different setup.

B. WHEN NOT TO USE?

Docker cannot be the best solution always; few cases are as

described below [10] -

i. Complicated Applications: Unlike basic

applications, using pre-obtained docker file or

pulling images from Docker Hub will be in-

sufficient for complicated applications as the task

of editing, building, and managing the requests

and responses among multiple containers on

various servers is very time-consuming.

ii. Performance-critical Applications: Docker holds

an upper hand in comparison to VMs when it

comes to the performance because the Containers

share host kernel and emulate a full Operating

system. In order to obtain the best possible

performance out of the server, dockers can be

avoided because the processes running on a

native OS will be faster than a process within a

container.

iii. Upgrade hassles: Docker as an emerging

technology, is still under development due to

which frequent updates are required in order to

experience new features.

iv. Security is a critical factor: When it comes to

more complicated applications, docker

containerization’s approach involves several

vulnerabilities like Kernel level threats,

inconsistent update, and patching of docker

containers, un-verified docker images, unsecured

communication, and unrestricted network traffic.

v. Multiple Operating System: As the docker

containers share the operating system of host

computer, it would need to use VM’s to test or run

the same applications on the different OS.

V. CASE STUDY

Integrating Containers into Workflows: A Case Study

Using Makeflow, Work Queue, and Docker [11] -

Distributed Systems such as Clusters, Clouds, and grids are

integrated to execute large scientific applications that

explain the topic of Workflow systems as a widely used

abstraction. Although, workflow has a hindrance when it

comes to multiple environments and differences in

Operating systems, data, and certain resources. To solve

this problem, the case study discusses how Lightweight

containers come into existence by providing a well-defined

operating system by making use of Make Flow and Work

Queue. Specifically, this case discusses the integration of

Docker with Make Flow and Work Queue using 4

strategies; Base Architecture – The basic architecture

places a container in a directory and use as a placeholder,

this ensures no overhead on the execution of the

application. Wrapper-Script – This explains about the

script which can be framed that helps to contain local

docker, pull the desired image, and assign each task to a

container. In this way, each task will be isolated from one

another. Worker-in-container- This provides a secondary

approach by placing an entire workflow system into a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2720

container, this allows the prevention of start-up and

shutdown costs of each task. Shared-Container- In this

approach, only one container is created for each

environment, this allows the concept of the task run on the

same container instead of deleting the container. This

avoids the overhead of multiple container creation. With

the creation of container technology with the Workflow

system significantly, lower cost can be accomplished

without any impact on Workflow on distributed

environments.

IBM Control Desk existing solution: A containerization

case study with Docker [13] -

The IBM Control Desk case study has pertinence to the

topic discussed in this paper. The IBM Control Desk

software provides IT service management that eases users'

support and infrastructures. This case study purely defines

building the Control Desk entirely on Cloud using Docker

containers and to provides SaaS as an edge platform. This

mainly follows protocols in order to build and deploy.

Firstly, the Control Desk is built on an administrative

workstation mode and deployed on the DB2 node. A

docker image is built for the control desk under the JMS

server. A network of direct communication is created

among the containers. For each Docker image, one

contained is processed. An IBM HTTP server is configured

to route traffic channels. By implementing this, IBM

achieved no impacts at the application level and grew

towards a cloud-native architecture.

Spotify: A Case Study with Containerization - Spotify is a

digital music service that uses microservice architecture

which delivers a whole host of features like music

streaming, logging in through social media credentials

globally. This application keeps 60 million subscribers

happy with their ultimate music streaming capability.

Spotify enables microservices through containerization of

a bundle of requests so that a single request will provide all

the information through its interface, which helps the user

not to make any repeated requests to match specific

information. Spotify has been using this technology since

2014 and has been a key pillar for strategical scalability.

VI. CONCLUSION

This paper gives a review of the use cases of Docker

containers which are surveyed on a wide range of methods

like- Docker as Edge Computing, building IaaS platform for

interactive social media applications, and integrating

Docker containers with IoT and resource management for

energy efficiency. This paper also gives a summary of the

evolution of the Docker container, extending to its use

cases and area of usage.

VII. REFERENCES

[1] Alin Calinciuc, Cristian Constantin Spoiala, Corneliu

Octavian Turcu, Constantin Filote, “OpenStack and Docker:

building a high-performance IaaS platform for interactive

social media applications”, May 19-21, 2016.

[2] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani,

Mohd Bazli Ab Karim, Wong Ming Tat, Sharipah Setapa,

Jing, Yuan Luke, Ong Hong Hoe, “Evaluation of Docker as

Edge Computing Platform”., 2015 Advanced Computing

Lab

[3] Fawaz Paraiso, St´ephanie Challita, Yahya Al-Dhuraibi,

Philippe Merle, “Model-DrivenManagement of Docker

Containers”., University of Lille & Inria Lille - Nord Europe

2016.

[4] Pankaj Mendki, “Docker container-based analytics at

IoT edge”., Senior Principal Engineer, Member of R&D

2018.

[5] Dong-Ki Kang, Gyu-Beom Choi, Seong-Hwan Kim, II-Sun

Hwang and Chan-Hyun Youn, “Workload-aware Resource

Management for Energy Efficient Heterogeneous Docker

Containers”., School of Electrical Engineering.

[6] Containers vs. VMs: What's the difference?

http://searchservervirtualization.techtarget.com/answer/

Containers-vs-VMs-Whats-the-difference.

[7] Understanding the architecture

https://docs.docker.com/engine/understanding-docker/.

[8] M. Raho, A. Spyridakis, M. Paolino, D. Raho, “KVM, Xen

and Docker: a performance analysis for ARM based NFV

and Cloud computing,” IEEE 3rd Workshop on Advances in

Information, Electronic and Electrical Engineering (AIEEE),

pp. 1–8, November 2015.

[9] R. R. Yadav, E. T. G. Sousa, and G. R. A. Callou, Docker

Containers Versus Virtual Machine-Based Virtualization:

Proceedings of IEMIS 2018.

[10] Deploy Docker Open Source, or Enterprise for High

Performing Systems, https://www.flux7.com/tech/

container-technology/docker/

[11] Chao Zheng and Douglas, Integrating Containers into

Workflows: A Case Study Using Makeflow, Work Queue,

and Docker.

[12] Control Desk existing solution: A containerization case
study with Docker https://developer.ibm.com/
technologies/ containers/articles/containerization-
docker-case-study.

