
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3465

Hash functions and its security for Snags

Jalagam Lokesh Naidu1, Akhil Chandra Gorakala2, Shanmuk Srinivas Amiripalli3

1Student, Department of Computer Science and Engineering, GITAM deemed to be University, Visakhapatnam,
Andhra Pradesh, India.

2Student, Department of Computer Science and Engineering, GITAM deemed to be University, Visakhapatnam,
Andhra Pradesh, India.

3Assistant Professor, Department of Computer Science and Engineering, GITAM deemed to be University,
Visakhapatnam, Andhra Pradesh, India.

---***---
Abstract - Cryptographic hash functions arbitrarily
compress long messages to mutates a short and fixed length,
which are significant due to their use in data integrity,
message authentication, and also in key generations
(Symmetric and Public-key Cryptosystems). Many of the
existing hash functions are designed to evaluate a finite
domain compression function in a mode of operation, and the
compression function itself is mostly based on block ciphers or
permutations. This modular design approach allows for a
rigorous analysis of security through both cryptanalysis and
proven security. Different cryptographic implementations
depend on the performance and strength of the hash functions
to satisfy the need for integrity and authentication. This
research paper provides an overview and importance of
cryptographic hash functions in this field with their
architectures, various attacks and progressive
implementation. Hash functions selected in projects NESSIE
and CRYPTREC are addressed briefly. SHA-3 Selection
initiative is also enacted.

Key Words: Cryptography, Hash functions, Data integrity
and Network Security.

1. INTRODUCTION

Network Security means protecting User confidentiality,
integrity, and resource availability[1]. Network Security
initializes with authorization i.e. with the help of
credentials such as a username and a password to access a
specific device commonly. Network security consists of
policies each network administrator has adopted to
prevent and track illegitimate access privileges, alteration
and denial of a computer network and network resources.
When a user is approved to do something else, a firewall
will require them to follow rules such as what resources the
network user is allowed to access. Thus, these policies are
reasonable to prevent unauthorized access to the device,
but this component may fail to track potentially dangerous
content such as software warms or network transmission
of Trojans.

Anti-virus or Intrusion Detection System (IDS) software
helps to detect the Malware. Communication between two
hosts using a network can be used to encrypt a privacy
policy. However apart from encryption-decryption
techniques, hash functions are ubiquitously used for

authentication. The world is becoming more
interconnected with the Internet and with modern
developments in networking. A substantial percentage of
information and networking infrastructure and
services available worldwide are personal, military,
commercial, and governmental. As such, it is important to
find out who will be transmitting critical data and who will
be receiving it, the accountability policies take care of it as
well. But it is an underlying and un-manipulated way of
identifying that data received by one user is sent by the
valid user, or the data received. All these issues are solved
by using hash function to demonstrate the validity of the
data and the user.

A cryptographic hash function maps a binary string of
variable length (a message or a file) to a binary string
(message digest) of fix length n, with n sometimes indicated
in the name of the hash function algorithm (SHA-256, SHA-
512, RIPEMD-160, etc.). Hash functions are used in
cryptography for data integrity and message (data origin)
authentication.

1.1 CRYPTOGRAPHIC HASH FUNCTIONS

The word “ hash function", used in computer science,
refers to a function which compresses an arbitrary length
message to a fixed-length message called the Message
Digest. Nevertheless, if it fulfills any additional criteria,
then it can be used in cryptographic applications and
then called as the Cryptographic Hash functions.

Cryptographic Hash functions are the most powerful
tool in the Security and Cryptography stream and are used
to achieve many security requirements such as
authentication, digital signatures, generation of pseudo
numbers, digital time-stamping, etc.

There are two types of Hash functions: Keyed and Un-
Keyed. Keyed hash functions use a hidden key to compute
the message digest and these are also known as MAC
(Message Authentication Code) but we don't use any secret
key in almost any.

Merkel defined one-way hash function (OWHF)[2] as that a
hash function H meets the following requirements:

1. H can be applied to Block of data of any length.
(any length means size of Block must be greater
than size of Digest we conclude at the end).

2. H produces a fixed length output i.e., Message

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3466

Digest.
3. Given H and x (any given input), it is easy to

computer Message Digest H(x).
4. Given H and H(x). it is computationally infeasible

to find x.
5. Given H and H(x), it is computationally

infeasible to find x und x ' such that H(x)=H(x')

For practical implementations of hash functions for
message authentication and digital signatures the first
three specifications are a must. Also known as the pre-
image resistance or one-way property, the fourth
requirement states that generating a message code from a
given message is easy but hard to generate a message back
from the given message digest. Also known as the Second
Pre-Image Resistance or Collision Resistance Property, the
fifth condition guarantees that an alternative message that
has to the same code as a given message cannot be bound.

1.2 Usage of Hash Function

Hash functions are used in combination with digital
signature systems to ensure data integrity. The message is
initially hashed, and then the hash-value (message digest),
as a representative of the message, is signed instead of the
original message. This saves time and space compared to
signing the entire message (block by block) in this way.

The hash value (message digest) corresponding to a
particular (original) message is initially determined. In
certain cases it preserves the credibility of this hash-value
(but not the message itself). After, the following check is
performed to determine whether the message has been
changed, i.e. whether a message is the same as the original
message. The message's hash value is calculated and
compared to the protected hash value; if they are equal, one
accepts that the inputs are also equal, and therefore the
message was not altered. This reduces the question of
maintaining the credibility of a potentially big message to

that of a small fixed-size hash value
[3]

.

In order to be effective from a cryptographic point of
view a hash function must fulfill certain requirements:

(a) to be difficult for two distinct messages to have the
same hash value

(b) Knowing a hash value to be computation infeasible is
to find a message with that hash value.

2. Structure of Hash Function

Different hash design structures are feasible, but we will
rely on only two designs which are mainly used in all NIST
standardized hash functions. They are:

a) Merkle-Damgard Iterated Hash Design and

b) Sponge Construction

2.1 Merkle-Damgard Construction

From the early onset of cryptographic hash functions,
designers relied on the Merkle-Damgård construction
(abbreviated to MD). In 1989 the MD architecture was

independently discovered by Merkle
[4] and Damgård[5] .

Most of the famous hash functions like MD4
[6]

, MD5
[7]

, SHA-

0[8], SHA-1
[9]

, RIPEMD-160[10] and so on follow the iterative
MD method. The central component of this construction is a
compression function that takes a fixed input length value,
and outputs a fixed-length hash value.

A compression function accepts two inputs: a chaining

variable, and a message block. Let f : {0,1}
b

x { 0,1}
n

->{0,1}
n

be a compression function which takes a b-bit message

block and an n-bit chaining value. Let h: {0,1}
*

be a MD

construction built by iterating the compression function f in

order to process a message of arbitrary length. A message M

to be processed using h is always padded in a manner such

that the length of the padded message is a multiple of the

block length b of f. Bit-length b corresponds to input length of

desired compression function f. The padding is done by

adding after the last bit of the last message block a single 1-

bit followed by the necessary number of 0-bits. Let |M|

be a binary representation of the length of the message M.

The binary encoding of the message length is also be added to

complete the padding. This is called a Merkle-Damgård

strengthening. Then input M subsequently divided into t

blocks, each of bit-length b.

The hash function h can then be described as follows:

where f is the compression function of h, Hi is the
intermediate chaining variable between stage i-1 and stage
i, and H0 is a pre-defined starting value or the initial. value
IV. The block diagram of the iterative hash function using
the compression function is shown in the Fig.1. The
computation of the hash value is dependent on the chaining
variable. At the start of hashing, this chaining variable has a
fixed initial value which is specified as part of the
algorithm.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3467

This process goes on recursively, with the chaining

variable being updated under the action of another part

of the message until the whole message is used. The

chaining variable's final value is then output as the

corresponding hash value for that message. One of its

distinctive features is that it promotes the compression

function's collision resistance and pre-image resistance

to the full hash function: For example, a collision on the

compression function can be effectively deduced from a

collision on the full hash function. For this situation, the

inclusion of the length at the end of the message is

important and is also important in order to prevent

several attacks, including long-message attacks.

Merkle-Damgård construction proves that hash

function safety is based on compression function

security. Thus, designing a collision-resistant

compression function is enough to build a collision-

resistant hash function. Nonetheless, recent studies

illustrate some inherent shortcomings of the MD

method. This includes being vulnerable to multi-

collision attacks
[11]

, long second pre-image attacks
[12]

and an attack on herding[13]. A detailed view of the MD

construction is shown in Fig.2.

2.2 Sponge Construction

G. Bertoniet
[14] proposed the construction of a

sponge to design hash functions that map the random

oracle. The construction of the sponge operates at the

state of b= r + c bits, r is called bit rate and c is capacity.

All bits of state are initially set to zero, and the message

is padded and separated into blocks of r bits each.

Sponge construction then proceeds in two phases:

Absorbing Phase and Squeezing Phase. In the first

phase, at a given rate, the input is "absorbed" into the

hash state, then at the same rate an output hash is

"squeezed" from it. To absorb data bits r. The data is

XOR into the state 's leading bits, and the block

permutation is used.

To squeeze, the first r bits of the state are produced

as output, and if the additional output is needed, the

block permutation is applied. Capacity c of hash function

is key to the Sponge Construction, and it can be

modified according to security requirements.

SHA-3 final round candidate algorithm Keccak is a

Sponge construction only hash function and it sets a

conservative c=2n where n is the output hash size.

3. Properties of hash functions

In this section we are shortly presenting the hash
functions evaluated and selected in NESSIE and CRYPTREC
projects.

3.1 NESSIE research project

The NESSIE (New European Schemes for Signature,
Integrity, and Encryption)[15], a European-funded IST
initiative, aimed at selecting powerful cryptographic
primitives of different types (block ciphers, stream ciphers,
digital signature algorithms, hash functions, etc.). The
project started with an open call for the submission of
cryptographic primitives as well as methodologies for
evaluation of those primitives. The call's spectrum was
made public in March 2000[16]. The key selection criteria
defined in NESSIE call for cryptographic primitives have
been long-term security, market requirements, efficiency
and flexibility. Along with the algorithms provided for
evaluation, well established standard algorithms have been
added for evaluation. Whirlpool algorithm for the category
hash functions and UMAC and Two-Track-MAC for MAC
was submitted. In February 2003, the project consortium
NESSIE announced the final set of cryptographic
algorithms. Whirlpool (proposed by Scopus Tecnologia S.A.,
Brazil, and K.U.Leuven, Belgium) and SHA-256, SHA-384,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3468

and SHA-512 (added for testing, part of the USA FIPS 180-2
standard) were chosen in the category of hash function.

The SHA (Secure Hash Algorithm) hash functions are a
set of cryptographic hash functions designed by the
National Security Agency (NSA) and published by the NIST
as a U.S. Federal Information Processing Standard. The
three SHA algorithms (SHA-0, SHA-1, and SHA-2) have
different structures. The SHA-2 family uses an identical
algorithm with a variable digest size i.e. SHA-256, SHA-384,
and SHA-512. SHA-2 family returns a number of bits
identical with the number in the name and uses for
operation messages not longer than 264-1, 2128-1, and
2128-1 bits respectively.

Whirlpool is a Square block cipher based hash function
(also used to design Rijndael which was selected as the
Advanced Encryption Standard (AES)). Whirlpool returns a
512-bit digest from a message which can have a total of two
256 bits. As part of the joint international standard ISO /
IEC 10118-3 (International Organization for
Standardization (ISO) and International Electro technical
Commission (IEC)), Whirlpool was adopted.

 Two-Track-MAC (proposed by K.U.Leuven, Belgium and
debis AG, Germany), UMAC (proposed by Intel Corp., USA,
Univ. of Nevada at Reno, USA, IBM Research Laboratory, USA,
Technion, Israel and Univ. of California at Davis, USA), and,
CBC-MAC (ISO/IEC 9797-1) and HMAC (ISO/IEC 9797-1)
have been selected at MAC category (last two, have been
added for evaluation as MAC standards.)

3.2 CRYPTREC IPA research project

The Information-technology Promotion Agency (IPA)
in Japan has introduced the CRYPTREC project
(CRYPTography Study and Evaluation Committees) with
the aim to establish standard cryptographic algorithms for

use within the Japanese e-government infrastructure.
[17]

CRYPTREC Project began in the year 2000. The formal
Call for Cryptographic Techniques received various types of
cryptographic techniques.

As for the NESSIE project, the CRYPTREC call was
available to different types of primitives. Some of the
algorithms evaluated for the NESSIE project (e.g. RC6,
MISTY1, Camellia, AES) were also submitted for evaluation
to CRYPTREC. In CRYPTREC, as in the evaluation of NESSIE,
several well-known or common primitives were included
for assessment. No algorithm has been provided for the
hash function group. However, due to their use of internet
security mechanisms the CRYPTREC team included MD5,
RIPEMD-160, SHA-1 for evaluation.

After evaluation, only RIPEMD-160, SHA-1, SHA-256,
SHA-384, SHA-512 with a note for RIPEMD-160, SHA-1 was
suggested in 2003, that if any cipher with a longer hash
value is available, it is preferable to select a 256-bit (or
more) hash function. This does not apply, however, in cases
where the hash to be used has already been constructed
according to the requirements of the cryptographic public-
key.

• RIPEMD-160 is a 160-bit message-digest
algorithm (and cryptographic hash function) developed
in K.U.Leuven (Belgium) and first published in 1996. It is
an improved version of RIPEMD, and uses the design
principles of MD4 and has performance similar to SHA-1.

• 128, 256 and 320-bit variants of this algorithm are
RIPEMD-128, RIPEMD-256 and RIPEMD320. The 256
and 320-bit models reduce collision risks, without
achieving a higher degree of protection compared to
RIPEMD-160.

Table II summarizes the hash function parameters which
satisfy the CRYPTREC research project requirements.

4. Attacks Targeting Hash Functions

The properties of hash functions are defined in this
section using the expression "Computationally Infeasible."
Given the current computing power, all properties are
fulfilled; as computing power rises each year, even though
no new attacks are created, the increase in computing
power weakens the resistance of current hash functions.

Recently new attacks
[18]

have been released concerning

collision resistance
[19] of hash functions. These attacks

attempt to evaluate 2 messages using fewer operations
which have the same hash.

An attack on MD5
[20] was presented in 2005, using

differential analysis, which allows effectively finding
collisions.

Applied on HAVAL-128, MD4, RIPEMD
[20]

, and SHA-0
[21]

,
the same attack reduced the number of operations to
determine a second message with the same hash.

Even if the number of operations needed to split the
hash functions is significant, these attacks reduce the ideal
number of operations that are supposed to be necessary.
These results inspired NIST to discover new hash

functions
[22] that were resistant. Other attacks are posed

that address hash functions and message authentication

codes
[23]

.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3469

5. Hash Functions Based on Compression
Functions

In this section, we consider open problems related to
the construction of compression based hash functions. This
is also known as domain-extending or operating mode,
where a compression function f is applied to a hash
function H with a virtually infinitely large domain with a
certain fixed and finite domain.

The iterated hash function principle is central to many
hash function designs: at the input of an initialization
vector IV, the iterated hash function Hf[24], based on the
compression function f, processes a padded message
(M1,M2,.., Mk) as follows:

H f (IV; M1, . . ., Mk) = hk, where:

h0 = IV,

hi = f(hi−1, Mi) for i = 1, . . . , k.

This principle is also called the plain Merkle-

Damgard(MD) design[25][26].

The specific padding rule for Merkle- Damgard ensures
suffix-freeness by appending the length of the message in
the last block. Popular hash functions including SNERFU,

MD4
[27]

, MD5
[28]

, RIPEMD, HAVAL
[29]

,WHIRLPOOL
[30]

, the

SHA family
[31]

, and numerous other hash functions have
adopted the Merkle-Damg gleichard theory. In addition,

other domain extensions such as HAIFA
[32] and dither

hash
[33] expand the iterative method of Merkle-Damg by

adding different counters or changing inputs to the
compression function.[34]

5.1 Ideal Model Security Results

In the ideal model one assumes that the domain
extensor H 's underlying compression function(s) f is an
ideal function, namely a random oracle with a fixed input
and output length[35]. These are commonly referred to as
generic security results, which ensure no structural defects
are visible in the hash function.

There are two types of results on security.[36] One
type of results includes proving a typical H protection
property atk when f is an ideal function and atk ∈ {col,sec,
pre}. Similarly, we have protection tests of in-

differentiability
[37] where the aim is to prove that H itself

behaves like a random oracle on arbitrary input lengths
provided that f is an ideal function. In-differentiability is
a better form of in-distinguishability (or pseudo
randomness), which is only a meaningful notion when
keyed with the algorithms (e.g. block ciphers). In-
differentiability comes therefore handy in the hash
function setting most notably to allow one to obtain a
bound on the adversarial

advantage against some atk for H denoted as Adv atk : for
any hash function security H

notion atk: Adv atk ≤ Pr RO atk + Adv H pro , where
Pr RO atk denotes the success H

probability of a generic attack against H behaving like a
random oracle under atk. Coron et al. prove that the MD
design with suffix-free padding and idealized compression
function from a random oracle is not in-differentiable.
Their observation formalizes the length extension attack:
one can compute H (M||M’) from H (M) and M’ and M'
even without understanding M, which is highly
undesirable for certain applications (note that padding
allows abstraction here for convenience, but this can be
easily addressed). The MD construction is, however,
indifferent whether it finishes with a chopping function
(where a part of the output bits is truncated) or a final
transformation, either where the underlying compression
function is optimal or where the hash function is based on
a PGV compression function. It has also been shown that
the MD design based on an ideal compression function or
idealized PGV construction, with prefix-free padding, is in-
differentiable from a random oracle.

Nevertheless, security notions such as collision
resistance are not retained in the regular model's MD
design with prefix-free padding only. In the other hand,
domain extenders that perform well on multiple protection

of property, such as BCM
[38] and XOR-(linear) hash

[39]
, also

lack a security review under the notion of in-differentiality.

5.2 New Domain Extenders

With the respective digest sizes, novel hash domain
extensors based on compression functions need to come
with at least comparable security and efficiency to SHA-2.
Breaking the sequential structure is one way which may
result in tree style designs. Known collision preserving
tree-based hash functions are the (strengthened) Merkle
tree[40], XOR-tree hash, and a variant of the trees preserving
the latter second pre-image security[41][42]. Skein also comes
with a tree alternative to the second round SHA-3 candidate
hash function.

Finally, we mention the tree hash functions of Rivest et
al.[43] and Bertoni et al.[44] where the latter also studied the
properties of tree hash functions necessary for obtaining
in-differentiable designs. There are diverse directions in
this area. Some of them include analysis of tree-based
alternatives or generic transformations that turn into their
parallel (-izable) counterpart a ready-made sequential
domain extensor. Bertoni et al used a similar approach in

the design of the Sakura
[45]

.

6. CONCLUSIONS

After the study, experiments, testing, and evaluation of
the process and the program, it has drawn a remarkable
conclusion. Cryptography and Hashing function's based on
compression function's adds additional security to the
system or device's. Among the three security results, Ideal
Model Security results are proven to be the best by using
domain extensor H's underlying compression function(s)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3470

f followed by next best results of New Domain Extender’s
using novel hash domain extender’s based on compression
functions and efficiency to SHA-2 and SHA-3.

REFERENCES

[1] Kanta, Harshitha & Naidu, Jalagam Lokesh & Srinivas,

Amiripalli. (2019). Data Security Using Cryptographic-
Steganography. 10.13140/RG.2.2.16337.99684.

[2] R. C. Merkle, “One Way Hash Functions and DES,”
Crypto’89, 1989, LNCS, vol. 435, pp. 428-446.

[3] Amiripalli, S. S., & Bobba, V. (2018). Research on
network design and analysis of TGO topology.
International Journal of Networking and Virtual
Organisations, 19(1), 72-86.

[4] R. C. Merkle, “One Way Hash Functions and DES,”
Crypto’89, 1989, LNCS, vol. 435, pp. 428-446.

[5] I. Damgård, “A Design Principle for Hash Functions,”
Crypto’89, 1989, LNCS, vol. 435, pp. 416-427.

[6] R. Rivest, “The MD4 Message Digest Algorithm,” Request
for Comments (RFC) 1320, Internet Engineering
 Task Force, 1992.

http://www.rfceditor.org/rfc/pdfrfc/rfc1320.txt.pdf.

[7] R. Rivest, “The MD5 Message Digest Algorithm,” Request
for Comments (RFC) 1321, Internet Engineering Task
Force, 1992.

[8] NIST, “Secure Hash Standard (SHS),” Federal
Information Processing Standards 180. 1993.

[9] NIST, “Secure Hash Standard (SHS),” Federal
Information Processing Standards 180-1, 1995.

[10] B. Preneel, A. Bosselaers and H. Dobbertin, “RIPEMD-
160: A Strengthened Version of RIPEMD,” FSE’96, 1996,
LNCS, vol. 1039, pp. 71–82.

[11] A. Joux, “Multicollisions in Iterated Hash Functions:
Application to Cascaded Constructions,” Crypto’04,
2004, LNCS, vol. 3152, pp. 306-316.

[12] J. Kelsey and B. Schneier, “Second Preimages on n-bit

Hash Functions for Much Less than 2n work,”
Eurocrypt’05, 2005, LNCS, vol. 3494,pp. 474-490.

[13] J. Kelsey and T. Kohno, “Herding Hash Functions and the
Nostradamus Attack,” Eurocrypt’06, 2006, LNCS, vol.
4004, pp. 183–200.

[14] Guido Bertoni, Keccak sponge function family, Version
1.2, April 23,2009.

[15] NESSIE consortium, NESSIE project announces final
selection of crypto algorithms, February 27, 2003,
available at:
https://www.cosic.esat.kuleuven.ac.be/ nessie/deliverables/ press_release_feb27.pdf, last visited March 2009.

[16] NESSIE, Call for Cryptographic Primitives, Version 2.2,
8th March 2000, available at:
https://www.cosic.esat.kuleuven.ac.be/ nessie/call/,
last visited March 2009.

[17] CRYPTEC site, Evaluation of Cryptographic Techniques,

available at: http://www.ipa.go.jp/
security/enc/CRYPTREC/index-e.html, last visited
March 2009.

[18] Xiaoyun Wang and Hongbo Yu, How to Break MD5 and
Other Hash Functions, Advances in Cryptology –
EUROCRYPT 2005, 2005, pages 19-35.

[19] E. Biham, R. Chen, Near collision for SHA-0, Advances in
Cryptology, Crypto’04, 2004, LNCS 3152, pp. 290- 305.

[20] X.Y. Wang, F.D. Guo, X.J. Lai, H.B. Yu, Collisions for hash
functions MD4, MD5, HAVAL-128 and RIPEMD, rump
session of Crypto’04, E-print, 2004.

[21] A. Joux. Collisions for SHA-0, rump session of Crypto’04,
2004.

[22] S. Contini, Y. L. Yin, Forgery and Partial Key-Recovery
Attacks on HMAC and NMAC Using Hash Collisions,
Advances in Cryptology – ASIACRYPT 2006, LNCS,
November 15, 2006,pp.37-53.

[23] M Gorski, S Lucks, T Peyrin, Slide Attacks on Hash
Functions, ASIACRYPT, Lecture Notes in Computer
Science. Springer, 2008.

[24] Lai, X., Massey, J.: Hash function based on block ciphers.
In: Advances in Cryptology - EUROCRYPT ’92. Lecture
Notes in Computer Science, vol. 658, pp. 55–70.
Springer, Heidelberg (1992)

[25] Damg˚ard, I.: A design principle for hash functions. In:
Advances in Cryptology - CRYPTO ’89. Lecture Notes in
Computer Science, vol. 435, pp. 416–427. Springer,
Heidelberg (1990)

[26] Merkle, R.: One way hash functions and DES. In:
Advances in Cryptology - CRYPTO ’89. Lecture Notes in
Computer Science, vol. 435, pp. 428–446. Springer,
Heidelberg (1990)

[27] Rivest, R.: The MD4 message digest algorithm. In:
Advances in Cryptology

- CRYPTO ’90. Lecture Notes in Computer Science, vol.
537, pp. 303–311. Springer, Heidelberg (1991)

[28] Rivest, R.: The MD5 message-digest algorithm. Request
for Comments (RFC) 1321 (April 1992)

[29] Zheng, Y., Pieprzyk, J., Seberry, J.: HAVAL - a one-way
hashing algorithm with variable length of output. In:
Advances in Cryptology - AUSCRYPT ’92. Lecture Notes
in Computer Science, vol. 718, pp. 83–104. Springer,
Heidelberg (1993)

[30] Barreto, P., Rijmen, V.: The WHIRLPOOL hashing
function (2003), http://www.larc.usp.br/
~pbarreto/whirlpool.zip

[31] National Institute of Standards and Technology. Secure
Hash Standard (SHS). Federal Information Processing
Standards Publication 180-3 (October 2008)

[32] Biham, E., Dunkelman, O.: A framework for iterative
hash functions – HAIFA. Cryptology ePrint Archive,
Report 2007/278 (2007)

[33] Rivest, R.: Abelian square-free dithering for iterated

http://www.rfceditor.org/rfc/pdfrfc/rfc1320.txt.pdf
http://www.cosic.esat.kuleuven.ac.be/
http://www.cosic.esat.kuleuven.ac.be/
http://www.ipa.go.jp/
http://www.larc.usp.br/
http://www.larc.usp.br/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3471

hash functions (ECRYPT Hash Function Workshop
2005)

[34] Amiripalli, S. S., & Bobba, V. (2019). Trimet graph
optimization (TGO) based methodology for scalability
and survivability in wireless networks. International
Journal of Advanced Trends in Computer Science and
Engineering, 8(6), 3454-3460.
doi:10.30534/ijatcse/2019/121862019.

[35] Amiripalli, S. S., & Bobba, V. (2019). Impact of trimet
graph optimization topology on scalable networks.
Journal of Intelligent & Fuzzy Systems, 36(3), 2431-
2442

[36] Amiripalli, S. S., Kumar, A. K., & Tulasi, B. (2016,
February). Introduction to TRIMET along with its
properties and scope. In AIP Conference Proceedings
(Vol. 1705, No. 1, p. 020032). AIP Publishing LLC.

[37] Coron, J., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-
Damg˚ard revisited: How to construct a hash function.
In: Advances in Cryptology - CRYPTO 2005. Lecture
Notes in Computer Science, vol. 3621, pp. 430–448.
Springer, Heidelberg (2005)

[38] Andreeva, E., Preneel, B.: A three-property-secure hash
function. In: Selected Areas in Cryptography 2008.
Lecture Notes in Computer Science, vol. 5381, pp. 228–
244. Springer, Heidelberg (2008)

[39] Bellare, M., Rogaway, P.: Collision-resistant hashing:
Towards making UOWHFs practical. In: Advances in
Cryptology - CRYPTO ’97. Lecture Notes in Computer
Science, vol. 1294, pp. 470–484. Springer, Heidelberg
(1997)

[40] Merkle, R.: One way hash functions and DES. In:
Advances in Cryptology - CRYPTO ’89. Lecture Notes in
Computer Science, vol. 435, pp. 428–446. Springer,
Heidelberg (1990)

[41] Sarkar, P.: Construction of universal one-way hash
functions: Tree hashing revisited. Discrete Applied
Mathematics 155(16), 2174–2180 (2007)

[42] Lee, W., Chang, D., Lee, S., Sung, S., Nandi, M.:
Construction of UOWHF: Two new parallel methods.
IEICE Transactions 88-A(1), 49–58 (2005)

[43] Rivest, R.L., Agre, B., Bailey, D.V., Crutchfield, C., Dodis, Y.,
Elliott, K., Khan, F.A., Krishnamurthy, J., Lin, Y., Reyzin, L.,
Shen, E., Sukha, J., Sutherland, D., Tromer, E., Yin, Y.L.:
The MD6 hash function (2008)

[44] Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Sufficient
conditions for sound tree and sequential hashing modes.
Cryptology ePrint Archive, Report 2009/210 (2009)

[45] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.:
Sakura: a flexible coding for tree hashing. In: Applied
Cryptography and Network Security - ACNS 2014.
Lecture Notes in Computer Science, vol. 8479, pp. 217–
234. Springer, Heidelberg (2014)

BIOGRAPHIES

 Jalagam Lokesh Naidu,
B.Tech Final year,
Dept. of Computer Science and
Engineering,
GITAM deemed to be University.

Akhil Chandra Gorakala,
B.Tech Pre-Final year,
Dept. of Computer Science and
Engineering,
GITAM deemed to be University.

Shanmuk Srinivas A,
Assit. Professor,
Dept. of Computer Science and
Engineering,
GITAM deemed to be University.

