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Abstract - With numerous digital sky surveys across a wide 
range of instruments and wavelengths becoming available 
over the past decade, the field of astronomy has become 
incredibly data rich. It has also increased the manpower and 
time required to analyze and process large scale data 
processing tasks like galaxy classification. We present a deep 
learning approach towards solving this computation problem, 
utilizing a convolutional neural network trained with the help 
of GPU accelerated platforms such as CUDA and made robust 
using techniques such as data augmentation and 
hyperparameter tuning.)  
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1. INTRODUCTION  
 
Human beings have been observing and recording celestial 
objects for millennia, from the era of the Stonehenge to the 
invention of the telescope, and more recently, the Hubble 
Space Telescope, broadening our understanding of the 
observable universe. In recent years, the number of 
telescopes, observatories, and instruments that operate on 
almost the entire electromagnetic spectrum has rapidly 
increased. Projects such as the Sloan Digital Sky Survey 
(SDSS) aim to map vast regions of the sky, while other such 
as the Event Horizon Telescope (EHT) attempt to image 
little-known objects such as black holes in the far reaches of 
the universe.  

Some of the largest objects in the known universe are 
galaxies, enormous collections of stars, remnants of dead 
stars, interstellar gas and dust, and mysterious dark matter, 
all bound together gravitationally. The classification system 
for galaxies was put forth by renowned astronomer Edwin 
Hubble and it was called the Hubble Sequence. It classified 
galaxies into groups based on their visual appearance. They 
were generally divided into groups such as spiral and 
elliptical.  

As the number of astronomical observations have increased 
exponentially, the manpower required to accurately process 
them has similarly increased at a commensurate rate. Data is 
being collected at a rate much faster than that can be 
analyzed manually. Not only do these tasks require a lot of 
skill and patience, they are also time consuming. The SDSS 
alone is expected to churn out 50 million images of galaxies 
in the near future. The Hubble Space Telescope (HST) 

collects an estimate 150 GB of data each week, the EHT is 
estimated to collect 350 TB of data per day. The image of 
black hole M87* alone was as large as 5 petabytes. 

As a result, the field of astronomy requires solutions to help 
offload such tasks onto large computing systems. Such 
challenges have found solutions in the field of deep learning. 
In particular, the task of analyzing images of galaxies and 
classifying them into their respective groups based on their 
visual morphology can be done with the help of 
convolutional neural networks (CNN). 

1.1 Convolutional Neural Networks 
 

Artificial neural networks are deep learning computing 
systems that can extract and learn features or patterns from 
sensory data. Convolutional neural networks are specialized 
artificial neural networks that use convolution kernel filters 
in order to extract features and analyze visual imagery. 

Convolution filters work by making use of convolution 
operations, which involve adding each element of an image to 
its local neighbours, weighted by the kernel. They’re used 
extensively for common image processing tasks like blurring, 
sharpening, edge detections, etc. It is their ability to 
efficiently extract feature maps that make them adept at 
image recognition tasks. The stacking of convolution layers 
allows for a hierarchical decomposition of the input. 

2. RELATED WORKS 
 
Various research studies have been conducted on the viability 
of automating galaxy classification. Calleja et. al. presented an 
experimental study for using machine learning and image 
analysis in order to classify galaxies. A neural network with a 
locally weighted regression method, and homogenous 
ensembles of classifiers were used. They used the bagging 
ensemble method for the neural networks and they 
manipulated input features to create the ensemble of locally 
weighted regression. The galaxies were transformed by 
rotating, and center-cropping, in a fully automatic manner. 
Furthermore, Principal Component Analysis (PCA) was used 
for dimensionality reduction, and to extract relevant 
information from the image data. The preliminary 
experimental results were evaluated with a ten-fold cross-
validation technique,  and it showed that the homogenous 
ensemble of locally weighted regression produces the best 
results, with 91 percent accuracy when considering three 
types of galaxies (Elliptical, Spiral, and Irregular), and 95 
percent when considering two types (Elliptical and Spiral). 
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Gauci et. al. made use of decision tree learning algorithms and 
fuzzy inferencing systems for this classification task. In order 
to distinguish between spiral, elliptical, or star/unknown 
bodies, the CART, C4.5, random forest, and fuzzy inferencing 
systems were developed. The morphology information was 
downloaded from the Galaxy Zoo project for the training and 
testing datasets, while the corresponding photometric and 
spectral parameters were sourced from Data Release 7 of 
SDSS. Accuracies for different galaxy morphologies were 
developed through various machine learning approaches and 
were analyzed. After comparing the results from the CART, 
C4.5, Random Forest, and Fuzzy Inferencing systems, it was 
observed that Random Forest gave the highest accuracies in 
all cases when 50 trees were used.  

Chou et. al. set out to build an algorithm that can extract 
indicators for galaxy morphologies. A pipeline was developed 
which combined multiple computer vision feature detectors 
and ML regression. The performance was experimented using 
the cross-validation technique. There are 3 sections in the 
pipeline: feature extraction, machine learning regression, and 
probability normalization. Multiple techniques were used for 
image analysis, like PCA, SIFT, Hog, Fourier transforms, etc. 
Their neural network is pre-trained, called Overfeat, which 
was trained on the ImageNet dataset. An ensemble of 
classification and regression classifiers such as least-square 
linear regression, ridge regression, and random forests is also 
used. They tested if introducing non-linearity in the 
regression classifiers by expanding the feature vector with 
quadratic features showed any improvement in the 
performance. A combination of all the feature extraction 
methods along with the quadratic features in the ridge 
classifier turned out to be their best algorithm, with root 
mean squared error of 0.113. 

Gonzalez et. al. presented a method to automatically detect 
and classify galaxies which include a novel augmentation 
procedure to make trained models more robust against the 
data taken from different instruments and contrast-
stretching functions. Training of the deep learning models 
was done using the public data such as the SDSS and Galaxy 
Zoo dataset, and private ones such as the Next Generation 
Virgo (NGVS) and Fornax (NGFS) surveys. Training were 
strongly bound to the conversion method from raw FITS data 
into a 3 channel RGB image. Therefore, a proposal for using 5 
conversion methods in data augmentation. This resulted in 
great improvement in the overall detection of galaxies from 
different instruments, data reduction procedure, and bands. The 
deep learning framework DARKNET and YOLO real-time 
object detection system were used to train the detection and 
classification methods. They were implemented in C and the 
CUDA platform, making extensive use of graphical processing 
units (GPU), which could process an SDSS image in 50 ms, or a 
DECam image in around 3 seconds. 

3. SYSTEM DESIGN 
 
Machine learning models are only as good as the dataset they 
are trained on. Model training accuracy increases with 
higher quality datasets. The dataset used for the purposes of 
this project is the Galaxy Zoo dataset, which contains 61578 

images of galaxies sourced from the SDSS. These images are 
to be split into training and validation datasets for the 
purposed of training the model. While the number of images 
in the training dataset is already quite high, the distribution 
of images between the types of galaxies could possibly be 
unequal. Therefore, there is a need to artificially increase the 
size of the dataset in order to have more instances of the 
same galaxy type to increase their chances of classification 
by the model. 
 
Data augmentation is the process of artificially increasing the 
size of a dataset without collecting any new data. One of the 
reasons that this works is that CNNs are rotation invariant, 
which means that they can robustly classify images even if 
they are placed in different orientations. Similarly, images 
are also rotation invariant, since there is no up or down in 
space. They are also scale invariant and translation invariant 
to a small degree. All these invariances can be exploited to 
perform data augmentation. As a result, the increased quality 
and size of the training dataset helps us combat overfitting in 
the machine learning model. Overfitting is a type of 
modelling error wherein the machine learning model learns 
to classify data that it has already seen before but fails to 
accurately classify unseen data. That is, it is said to have 
memorized the training data and cannot replicate that 
performance with new test data. In other words, the model 
fails to generalize well with new data. 
 
Data augmentation can be done in the following ways: 

 Random zoom 
 Random rotation 
 Vertical flip 
 Horizontal flip 
 Random contrast shift 
 Random brightness shift 
 Rescale 

 
The Galaxy Zoo dataset comes with a CSV file that maps the 
61578 images to 37 labels from the Galaxy Zoo decision tree. 
Of these 37 labels, 6 are of prominent galaxy shapes; 
elliptical, cigar-shaped, in-between, barred-spiral, spiral, and 
on-edge. Therefore, these are the 6 different classes our 
model will classify the images of the galaxies into. Rather 
than using the CSV file to look up the label of the training 
images, it is prudent to use a more efficient solution for 
segregating the training images. TensorFlow provides an API 
that can read images from separate directories that indicate 
which label they belong to. Hence, while augmenting the 
dataset, we also segregate the labelled training images into 
their own directories which are named according to which 
class they belong to. 
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Fig -1: Data Pipeline Architecture 

 

4. METHODOLOGY AND IMPLEMENTATION 
 
Initially, the we took up the real-time approach to data 
augmentation using TensorFlow’s built-in APIs, but the 
image transformation tasks proved too resource intensive 
and took up a lot of training time. Therefore, we switched to 
offline augmentation with the help of a Python library called 
Augmentor. This also allowed us to segregate the images into 
their respective directories based on the class they belong to. 
From the entire Galaxy Zoo dataset, the correctly labelled 
images corresponding to the 6 types of galaxies came up to 
31468 images. 
 
Some transformations were to be performed randomly on 
some images, and others were performed on all of them, 
such as resize and zoom. Galaxy Zoo had 424 x 424 pixel 
colour JPEG images, which we cropped with the zoom 
operation in to 265 x 265 pixel images, since the void of 
space around the image of the galaxy wasn’t going to 
influence the performance of the model. Then we also down 

sampled the images 3x to keep the input size of the network 
manageable. We performed the following image 
transformation operations using Augmentor in order to 
artificially increase the size of the dataset: 
 

 Zoom (center-crop) by a factor of 1.6 
 Resize to 70 x 70 pixel images 
 Random rotation by 90 degrees with a probability 

of 0.2 
 Vertical (top to bottom) flip, with a probability of 

0.5 
 Horizontal (side to side) flip, with a probability of 

0.5 
 Random contrast shift with a probability of 0.5, min. 

factor of 0.7, and max. factor of 1.5 
 Random brightness shift with a probability of 0.5, 

min. factor of 0.7, and max. factor of 1.8 
 
The above data augmentation operations brought the 
dataset to 46486 images. We then split them into two 
datasets: one for training with 23245 images, and the other 
for validation with 23241 images. This helps us use the 
flow_from_directory API from TensorFlow’s 
ImageDataGenerator class, which lazy loads images into 
memory. 
 

 
Fig -2: Distribution of Training Images 

 

4.1 Avoiding Overfitting 
 
Data augmentation on its is not sufficient to reduce the 
effects of overfitting. We also need to tune the 
hyperparameters of the neural network in order to optimize 
it for our learning task. Hyperparameters are those which 
define the architecture of the neural network. 
Hyperparameter tuning is the process whereby we choose a 
set of optimal hyperparameters for a learning algorithm. 
 
Dropout is a regularization method that approximates a 
large number of neural networks with different 
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architectures parallelly. During training, some number of 
layer outputs are ignored or “dropped out” randomly. This 
forces the neural network to treat it like a new layer with a 
different number of nodes and connectivity to the prior layer 
and makes it learn more robust features. We set dropout 
layers in our TensorFlow model at probabilities of 0.6 and 
0.4. 
 
Learning Rate Scheduler is a callback function in TensorFlow 
that reduces the learning rate as the number of epochs 
increases during training. After a certain number of epochs, 
the callback function starts exponentially decreasing the 
learning rate value to avoid overfitting. 
 
Early Stopping is another callback function for TensorFlow 
that monitors the training process on a validation set and 
stops the process if the performance on that dataset starts to 
degrade. We set the ‘patience’ field to 5, which means that it 
stops training if the performance does not improve for 5 
consecutive epochs. 
 
Reduce LR on Plateau is another function that monitors a 
quantity and if no improvement is seen for a ‘patience’ 
number of epochs, it reduces the learning rate by a certain 
factor. Here, it monitored the validation loss for 2 
consecutive epochs, waits for 1 epoch as a cooldown, and 
reduces the learning rate by a factor of 0.2. 
 
Neural networks are trained using stochastic gradient 
descent and require a proper loss function when designing 
and configuring the model. The loss function is used to 
compute how well a model is performing, and this is 
computed as a loss value. The value is used to update the 
weights of the neural network during backpropagation. For 
our particular learning task, which involves classification 
across 6 categories of galaxies, we require the use of 
categorical cross-entropy as a loss function. The use of this 
function also necessitates the use of a SoftMax activation 
function in the final layer of the network, since it measures 
the performance of a classification model whose output is 
going to be a probability value between 0 and 1. The entropy 
value increases as the predicted probability diverges from 
the actual label. 
 

 
Fig -3: Categorical Cross-Entropy Loss 

 
 
 

5. EXPERIMENTAL RESULTS 
 
The neural network was trained on the development 
workstation equipped with a quad core Intel Core i5 4460 
clocked at 3.2 GHz, with 8 GB of DDR3 RAM, and an NVIDIA 
GTX 970 graphics card with 1664 CUDA cores and 4 GB of 
VRAM. The model was set to train for 60 epochs with a batch 
size of 64, and the image dimensions set to 45 x 45 pixels to 
manage the network complexity. After going through 23 
variants of the network, the best performing model ran for 
48 epochs until the callback function stopped the training 
process once the performance started to degrade. 
 
The model trained for around 30 minutes, and achieved net 
accuracy of 90%. 

 
Fig -4: Training and Validation Accuracy 

 
Fig -5: Training and Validation Loss 

 

6. CONCLUSION 
 
In this study, we have developed a CNN to solve the problem 
of classifying galaxies based on their morphological features 
from raw images sourced from the SDSS catalogue. The 
network was able to predict various aspects of the galaxy 
morphology directly from raw pixel data. The network is 
robust and is able to avoid overfitting despite a complex 
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architecture by careful tuning of hyperparameters and data 
augmentation. 
 
Our results indicate that network performance is highly 
dependent on the quality of data used for training. A large, 
well-distributed dataset goes a long way in improving the 
accuracy and generalization ability of the model. 
 
REFERENCES 
 
[1] Jorge De La Calleja, Olac Fuentes, Machine learning and 

image analysis for morphological galaxy classification, 
Monthly Notices of the Royal Astronomical Society, 
Volume 349, Issue 1, March 2004, Pages 87–93, 
https://doi.org/10.1111/j.1365-2966.2004.07442.x  

[2] Gauci, Adam & Adami, Kristian & Abela, John, Machine 
Learning for Galaxy Morphology Classification, 2010. 

[3] Freed, Matthew & Lee, Jeonghwa. (2013). Application of 
Support Vector Machines to the Classification of Galaxy 
Morphologies. 322-325. 10.1109/ICCIS.2013.92. 

[4] Fang-Chieh Chou, “Galaxy Zoo Challenge: Classify Galaxy 
Morphologies from Images”, 2014. 

[5] Wang, Lei & Ma, Zhixian & Xu, Haiguang & Zhu, Jie. 
(2016). Classification of X-Ray Galaxy Clusters with 
Morphological Feature and Tree SVM. 701-704. 
10.1109/ICMLA.2016.0124. 

[6] Ralph, Nicholas O. et al. “Radio Galaxy Zoo: 
Unsupervised Clustering of Convolutionally Auto-
Encoded Radio-Astronomical Images.” Publications of 
the Astronomical Society of the Pacific 131.1004 (2019): 
108011. Crossref. Web. 

 

 

 

 


