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Abstract: Alzheimer’s disease (AD) is an incurable chronic 
disorder that leads to cerebral atrophy resulting in memory 
impairment and cognitive dysfunction. Machine learning 
techniques are extensively used in various medical fields. 
There has been considerable research for the classification 
of Alzheimer's disease. In this paper, we have reviewed 
various papers by different researchers that use different 
machine learning techniques, in order, to provide a better 
understanding of the work that has been done in the field of 
Alzheimer’s disease. The sole purpose of doing so is to 
evaluate more effective and coherent learning techniques for 
the classification of Alzheimer’s Disease. Support Vector 
Machine (SVM), Artificial Neural Networks (ANN), and Deep 
Learning (DL) are the main machine learning techniques 
that are scrutinized. 
 
Index Terms: Alzheimer's Disease, Support Vector 
Machine, Artificial Neural Network, Deep Learning, 
Machine Learning, Classification of Alzheimer’s  Stages. 
 

1. INTRODUCTION 

Alzheimer’s disease (AD), a regular dementia type, is a 
progressive neurodegenerative disease that results in 
gradual but continuous deterioration of memory and 
causes impairment in intellectual capabilities and other 
mental functions. Structural changes in the brain arise due 
to Alzheimer’s disease. Symptoms develop gradually and 
slowly and worsen with passing time. The patient, initially, 
develops a mild cognitive impairment (MCI) and gradually 
progresses to AD. MCI is an intermediate stage of AD. 
Although, not all MCI patients get converted into AD [1]. 
AD is currently incurable but the disease can be prevented 
from progressing if it is detected at an early stage [2]. 26.6 
million people suffered from AD in 2006. By 2050, AD is 
predicted to affect 1 in 85 people globally, roughly 43% of 
ubiquitous cases need a high level of care[3]. Hence, the 
main aim of this research is to predict the conversion of 
MCI to AD. 

In the past decade, machine learning techniques have been 
widely used in the diagnosis of AD[4,5,6]. Support vector 
machines (SVM), artificial neural networks (ANN), and 
deep learning (DL) are the most substantially used 
classification techniques. The main difference between 
SVM and ANN is the nature of the optimization problem. 
The scope of solution in SVM is global [7] and local in the 
case of ANN. The feature extraction step is most important 
in both SVM and ANN. Whereas, the feature extraction step 

in deep learning is integrated into the learning model itself. 
Deep learning is found to be useful for image data in large 
datasets[8]. The Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) [9](adni.loni.usc.edu), Australian 
Imaging, Biomarker & Lifestyle Study of 
Ageing(AIBL)(aibl.csiro.au), Open Access Series of Imaging 
Studies(OASIS)(www.oasis-brains.org) are most widely 
used databases. Magnetic resonance imaging (MRI) images 
of AD, MCI, cognitive normal healthy (CN) are pooled from 
ADNI datasets[10]. The diagnostic accuracy of AD is greatly 
improved by using high-resolution magnetic resonance 
(MR)images. 

For the classification of AD patients from CN, MR images 
play an important role [11] as patients with AD show 
patterns of grey matter(GM) atrophy. The use of Voxel-
based Morphometry (VBM) is proposed by many 
researchers for measuring the spatial GM atrophy 
distribution in the brains of MCI and AD patients 
[12,13,14]. VBM uses Statistical Parametric Mapping (SPM) 
for structural MRI data analysis [15,16]. SPM is developed 
by the Wellcome Centre for Human Neuroimaging for 
public use. Many researchers use FreeSurfer which is 
another popular open-source software that is developed 
for volume-based morphometry. 

In this paper, we present a detailed and separate analysis 
for three main machine learning techniques namely SVM, 
ANN, DL on the diagnosis of AD. Section 2.1, 2.2, 2.3 
provides analysis on the classification of AD using SVM, 
ANN, DL algorithms respectively. A brief comparison of 
SVM, ANN, and DL and their merits and demerits are also 
described in section 3. 
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2. CLASSIFICATION ALGORITHMS USED IN 
ALZHEIMER’S DISEASE 
 
2.1 Support Vector Machine (SVM) 
 

 
Fig -1: Support Vector Machine 

Support Vector Machine is a binary, machine learning 
classification algorithm. It is suited for extreme cases and 
draws a decision boundary also known as a hyperplane. 
Zhu et al. [17] proposed early detection of AD using a 
spatial-temporal solution by recognizing the aberrant 
structure from a longitudinal MRI sequence. They initially 
compared the classification performance of the Temporally 
structured SVM (TS-SVM) early detection method and the 
standard SVM based method. Later feature selection was 
implemented to both TS-SVM early detection method and 
the standard SVM based method. Hence, the classification 
performance of all the methods namely, SVM, SVM+FS, TS-
SVM, and TS-SVM+FS respectively were compared. The 
classification accuracy of TS-SVM was found to be 10% 
more than standard SVM, this indicates the advantage of 
temporal and monotony constraints. Feature selection is 
essential in improving accuracy in detecting AD accurately, 
SVM+FS and TS-SVM+FS are estimated to obtain 3.8% and 
2.9% increment over SVM and TS-SVM respectively. Using 
TS-SVM instead of standard SVM has two major benefits in 
early determination and high accuracy in detection of AD: 
(1) Temporal consistency, (2) Early detection. Therefore, 
TS-SVM was implemented to predict AD at an early stage 
and classify longitudinal MRI of MCI converters and non-
converters. 151 subjects were selected out of which 70 
were MCI-C subjects and 81 MCI-NC subjects and after 10-
fold cross-validation, an accuracy of 82.5% was achieved. 
In order to obtain high accuracy in classification, multiple 
classification algorithms were carried out in Matlab 
machine learning toolbox by Sheng et al. [18]. Classifiers 
with different kernel functions were trained using different 
features. Proper feature selection has two main ways, 
filter, and wrapper feature selection. The criterion for filter 
feature selection is independent of the particular 
classification algorithm, generally, estimation of statistical 
properties are performed using them. The 6 most common 
criteria are the Kruskal-Wallis test, Chi-square score, 
multivariate minimal redundancy maximal relevance 
(MRMR),  Fisher score, Gini score, and relief feature score. 

After performing these 6 filter selections in Matlab it was 
concluded that the relief feature score performed the best. 
To reduce the number of features wrapper feature 
selection was implemented. More than three thousand 
features were processed using filter and wrapper feature 
selection and finally, thirty features were selected. Support 
vector machine (SVM: Linear, Quadratic, Cubic, Fine 
Gaussian, Medium Gaussian, Coarse Gaussian), Tree (Fine, 
Medium, Coarse), Discriminant (Linear, Quadratic, 
Logistic), Ensemble (Boosted Trees, Bagged Trees, 
Subspace Discriminant, Subspace KNN, RUS Boosted 
Trees) and KNN (Fine, Medium, Coarse, Cosine, Cubic, 
Weighted) were the tested classifiers. Out of all of the 
above classifiers, the SVM classifier yielded very accurate 
results. They used field mapping technique and functional 
MRI dataset of 96 subjects ( 24 CN, 24 EMCI, 24 LMCI, 24 
AD ) to achieve classification accuracies of 93.8% for EMCI 
vs. CN, 95.8% for LMCI vs. CN, 95.8% for AD vs. CN, and 
91.7% for LMCI vs. AD, respectively using 5 fold cross-
validation. High dimensional multi-modality imaging and 
genetic data were integrated by Peng et al. [19] including 
MRI sequence, Positron Emission Tomography ( PET ), and 
Single Nucleotide Polymorphism (SNP) genome data of 
189 subjects (47 CN, 93 MCI, 49 AD). Each feature was 
assigned its own feature mapping. Using multiple kernel 
SVM accuracies of 96.1% for CN vs. AD, 80.3% for CN vs. 
MCI, 76.9% for MCI vs AD were observed using 10 fold 
cross-validation. Fludeoxyglucose (18F-FDG), Positron 
Emission Tomography (PET) data, and segmented 
Magnetic Resonance images (MRI) multi-modality datasets 
with Sparse Inverse Covariance Estimation (SICE) methods 
were used by Ortiz et al. [20]. SICE is used to analyze the 
undirected graphs to derive the functional and structural 
connectivity patterns among CN, MCI, AD. Reliable 
estimation of the inverse covariance is reached using SICE 
even when the sample size is close or less than the number 
of brain regions. Linear SVM was employed for 249 
subjects (68 CN, 111 MCI, 70 AD) and accuracy of 92% was 
calculated for CN vs AD, 86% for CN vs MCI, 84% for MCI 
vs AD. 10-fold cross-validation was used. Zhang et al.[21], 
for the classification of CN, MCI, and AD patients, divided 
the MCI group of patients into early MCI (EMCI) and late 
MCI (LMCI). The division of the MCI group was done in 
order to test the classification capability of classifiers. The 
Diffusion Tensor Imaging (DTI) images were used as it 
estimates the location, direction, and anisotropy of White 
Matter (WM) regions of the brain. The AD patients show 
patterns of Gray matter (GM) and White Matter (WM) 
atrophy. WM atrophy is considered to be secondary to GM 
atrophy. Fractional Anisotropy (FA) and Mean Diffusivity 
(MD) is the most frequently used DTI metrics [42], FA is an 
estimation of the degree of water diffusion directionality in 
the tissue and MD is an estimation of gross voxel diffusion, 
Axial Diffusivity (DA) and Radial Diffusivity (RD) designate 
the diffusion coefficient that is parallel and vertical with 
the direction of WM region respectively. Local Diffusion 
Homogeneity (LDH) uses the Spearman's rank correlation 
coefficient (LDHs) and Kendall’s coefficient concordance 
(LDHk) are used to quantify the comprehensive 
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consistency of the diffusivity series. These diffusion 
metrics distinguish microstructural WM properties. The 
preprocessed DTI data gave an idea of WM diffusion 
metrics. SVM and Logistic Regression (LR) algorithms are 
then applied to classify the four groups (CN, EMCI, LMCI, 
AD). The evaluation of classification performance is done 
using leave-one-out cross-validation (LOOCV) even when 
the sample size is small. LOOCV yields a good estimation in 
the generalization of the classifiers. Recursive Feature 
Elimination (RFE) method was used along with SVM to 
acquire the supreme feature dimension. DTI scans of 213 
subjects (51 CN, 75 eMCI, 39 lMCI, and 48 AD) from ADNI 
dataset and achieved accuracies of 89.9% for CN vs AD, 
88.1% for CN vs eMCI, 100% for CN vs lMCI, 92.98% for 
eMCI vs lMCI, 84.55% for eMCI vs AD, 97.7% for lMCI vs 
AD.  

2.2 Artificial Neural Networks (ANN) 
 

 
Fig -2: Artificial Neural Network 

 
An artificial neural network is a computing system that 
imitates the working of the human brain i.e it mimics the 
ways the human brain analyzes and processes information. 
ANNs have input, hidden, output layers and they have the 
capability of self-learning, empowering them to produce 
better results. Gorji et al. [22] proposed efficient pseudo 
Zernike moments (PZMs) for the diagnosis of MCI, AD from 
CN. PZM is used to extract any discriminatory information 
from structured MRI (T1). Pattern Recognition Neural 
Network (PRNN), a feed-forward network, and Learning 
Vector Quantization neural network (LVQNN), a 
supervised neural network were used to classify 500 MRIs 
dataset (148 CN, 172 MCI, 180 AD). Accuracies of 97.27% 
for CN vs AD, 94.88% for MCI vs AD, 95.59% for CN vs MCI 
were observed using 10-fold cross-validation. Multiple 
Kernel Learning (MKL) is a promising group of machine 
learning techniques for intricate data mining tasks by 
integrating with multiple diverse kernel functions.[23]. 
MKBoost, an MKL technique that boosts the multiple 
kernel learning classifier for classification problems. The 
basic principle of MK boost is to employ a boosting method 
in order to learn a set of multiple base kernel classifiers, 
each is learnt from a single kernel. Liu et al. [24] used  SVM 
with MKBoost to classify 710 subjects (200 AD, 120 MCIc, 
160 MCInc, and 230 NC). With 10-fold validation, the 
accuracies observed were 95.37% for CN vs AD, 90.41% 

for MCI vs AD, 86.56% CN vs MCI, 73.95% for MCIc vs 
MCInc. Multiple different but related problems can be 
solved using Transfer Learning which makes use of the 
knowledge gained by solving one problem and then 
applying that knowledge in some other problem. 
Conventional Machine Learning algorithms use samples 
from a single domain and it is observed that their 
performance is affected when the samples are less. 
Correlation information from multiple domains renders 
crucial observations. Cheng et al.[25] in their paper 
proposed a Multi-Domain Transfer Learning (MDTL) 
framework which consists of a multi-domain transfer 
feature selection (MDTFS) model and a multi-domain 
transfer classification (MDTC) model that can aid in early 
detection of AD. They also compared standard SVM with 
least absolute shrinkage and selection operator (LASSO) 
[31], Multitask Feature Selection (MTFS) [32], and 
Manifold regularized MTFS (M2TFS) [33] and their 
proposed MDTFS, they found that MTFS and M2TFS and 
MDTFS achieves better classification performance than 
Lasso method because all other methods except Lasso are 
multi-auxiliary domains. MDTFS yields better results than 
MTFS and M2TFS. Using 10 fold validation and MRI of a 
total of 807 subjects (186 AD,  167 pMCI (progressive 
MCI), 228 sMCI (stable MCI), and 226 NC), accuracies of 
94.7% were achieved for classification of CN vs AD, 81.5% 
for CN vs MCI, 73.8% for progressive MCI (pMCI) vs stable 
MCI (sMCI). To curtail the negative effects of unrelated 
source domains Cheng et al.[26] furthermore refined their 
methods by developing a robust multi-label transfer 
feature learning( rMLTFL). The framework consists of 
three parts, (1) image pre-processing and feature 
extraction, (2) rMLTFL (3) classification using baseline 
SVM. rMLTFL can simultaneously detect and capture 
common features from a multi-source domain, it also aids 
in identifying unrelated domains. 406 subjects( 112 CN, 86 
pMCI, 106 sMCI, 102 AD ) were classified to achieve 
accuracies of 95.2% for CN vs AD, 82.4% for CN vs MCI, 
76.3% for pMCI vs sMCI, 76.7% for MCI vs AD. Thus a 
significant increase in accuracy was observed using 
rMLTFL. 
 
2.3 Deep Learning (DL) 
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Fig. 3. Deep Learning Network 

 
Deep learning is an artificial intelligence technique and a 
subset of machine learning that imitates the structure and 
function of the brain using artificial neural networks. Suk 
et al.[27] proposed a deep learning-based latent feature 
representation with a stacked auto-encoder (SAE). Deep 
learning is based on the concept that indicates the 
effectiveness of deep architectures over shallow 
architectures with respect to computational elements and 
parameters that are required to delineate unknown 
functions [34]. One of the most important features of deep 
learning is that the low-layer characterizes low-level 
features and the high-layer extracts those low-level 
features. The latent representations from the original 
neuroimaging and biological features are uncovered using 
stacked auto-encoder (SAE). The data used by them was 
extracted from ADNI dataset, neuroimaging data i.e the 
baseline MRI and 18-fluoro-deoxyglucose (FDG) PET 
image data and biological data i.e CSF data were acquired 
from 51 AD patients, 99 MCI patients among which 43 
were MCI converters i.e. those patients who progressed to 
AD and 56 MCI non-converters i.e those patients whose 
progression to AD did not happen in 18 months, and 52 CN 
subjects. The deep architecture, in the case of 
neuroimaging and biological data, can be employed 
effectively to unfold latent or hidden representation, 
immanent in the low-level features from modalities, and 
eventually to increase the accuracy of classification. They 
used GM for classification as it is highly related to AD and 
MCI patients in comparison to WM and CSF [35]. The GM 
tissue volume from MRI and the mean intensity from FDG-
PET were used as features for each region of interest (ROI). 
93 features were obtained from MR images and the same 
dimensional features from FDG-PET images. They 
concluded and corroborated the effectiveness of the 
proposed method, for the classification of AD vs CN, MCI vs 
CN, AD vs MCI and MCI-C vs MCI-NC the accuracy was 
found to be 98.8%, 90.7%, 83.7%, and 83.3% respectively, 
using 10 fold validation. For the prediction of AD Hosseini 
et al. [28] proposed a 3D convolutional neural network 
(3D-CNN) that is pre-trained by 3D Convolutional 
Autoencoder (3D-CAE) in order to discover generic 
selective AD features in the lower layers. A few co-oriented 
scalar feature maps for input 3D image sets with scalar or 
vector voxel-wise signals are extracted using conventional 
unsupervised autoencoder by integrating data encoding 
and decoding. The autoencoder training is implemented 
using back-propagation and limits the feature space 
properties to minimize the reconstruction error, this is 

done for the extraction of features that encapsulate 
distinctive patterns of variations of input data. The pre-
trained 3D-CAE updation and fine-tuning of the Deeply 
Supervised Adaptive 3D-CNN (DSA-3D-CNN) was 
performed using the Adadelta gradient descent [36]. They 
used structural MRI (sMRI) images of 210 subjects(70 
AD,70 CN, 70 MCI) from the ADNI database for 
classification of 5 groups, 4 binary ones (AD vs NC, MCI vs 
NC, AD vs MCI, AD+MCI vs NC) and 1 ternary one (AD vs 
MCI vs NC). The DSA-3D-CNN was pre-trained on 30 
CADDementia subjects as a source domain; the features 
then extracted were used for the identification of AD 
biomarkers in lower layers of the 3D CNN network. For 
classification of the group’s AD vs NC, MCI vs NC, AD vs 
MCI, AD+MCI vs NC, and AD vs MCI vs NC the accuracy was 
found to be 99.3%, 94.2%, 100%, 95.7%, and 94.8% 
respectively. They concluded and validated the efficiency 
of the proposed system by differentiating AD, MCI and NC. 
7 classification metrics (accuracy (ACC); specificity (SPE); 
sensitivity (SEN); positive predictive value (PPV), or 
precision; balanced accuracy (BAC); negative predictive 
value (NPV), and F1-score) were estimated using 10-fold 
cross-validation. Zheng et al.[29] proposed a stacked Deep 
polynomial network (S-DPN), DPN algorithm is 
implemented to efficiently discover feature representation 
from smaller samples, whereas S-DPN is supposed to 
enhance the feature representation. They used 
neuroimaging data i.e MR images and PET images from the 
ADNI database. As multi-modality data was used, they 
proposed a multi-modality S-DPN (MM-S-DPN) algorithm 
for fusing multi-modality neuroimaging data and learning 
more differentiating and powerful feature representation 
for classification of AD. For S-DPN, numerous 2-level basic 
DPNs are stacked consecutively to form a deep hierarchy; 
the output of the previous level of a basic DPN is fed as 
input to the next level of a basic DPN and every DPN is 
built with a 3-layer network. A two-stage S-DPN is used in 
the MM-S-DPN algorithm. In the first stage, two S-DPN are 
used to extract the high-level feature representation from 
MRI and PET respectively; these extracted high-level 
features are then fed to another S-DPN, in the second stage, 
in order to relate the modalities as these modalities have 
their unique attributes of AD. They used the same 
neuroimaging data from 51 AD patients and 52 CN. 
Segmentation of sMRI into grey matter, white matter, 
cerebrospinal fluid, skull-stripping, Anterior Commissure 
(AC) Posterior Commissure (PC) correction, and removal 
of the cerebellum was carried out. Each MR image was 
subdivided into 93 regions of interests (ROIs) using atlas 
warping. Furthermore, the grey matter volumes were 
considered as a feature for each of the 93 ROIs. Each PET 
image is aligned with a rigid registration with the 
corresponding MR image of the same person. For PET 
images, the average intensities of the 93 ROIs were 
considered as a feature. As a result, 93 features were 
extracted from each modality in total. The classification 
was carried out using 2 classifiers namely: (1) Linear SVM 
classifier and (2) embedded classifier. These two classifiers 
were used to scrutinize the accuracy of the MM-S-DPN 
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algorithm. The classification result of the MM-S-DPN 
algorithm using the SVM classifier yielded 97.27% 
accuracy because it coalesces MRI and PET data 
successfully. AD vs CN classification using MM-S-DPN with 
embedded classifier resulted in an accuracy of 97.27%. 
Zheng et al. [30] constructed a multi feature-based 
network (MFN) by employing sparse linear regression 
(LASSO) that was executed on six types of morphological 
features to foster structure-based auto diagnosis. They 
used baseline MR images of 528 subjects, 165 CN, 142 AD 
patients, 221 MCI patients among which 95 were stable 
MCI (sMCI) and 126 were progressive MCI (pMCI), from 
the ADNI database. These images were preprocessed using 
FreeSurfer, non-brain tissue removal, gray matter (GM) 
segmentation, reconstruction of GM/white matter 
boundaries, motion correction, and coordinate 
transformation were included while preprocessing 
[37,38,39]. The cross-validation process was employed to 
evaluate the morphological features, network connections, 
network properties, and their combinations. In each 
interaction, the nested feature selection, parameter 
optimization, and classifier training were employed to 
execute cross-validation. They applied a two-step feature 
selection strategy to find the preeminent subset and to 
minimize the overfitting risk. The feature selection 
strategy used were minimum redundancy and maximum 
relevance and SVM-based recursive feature elimination 
(SVM-RFE), the minimum redundancy and maximum 
relevance select features that are highly distinguishable 
and have low redundancy [40] whereas SVM-RFE is an 
iterative backward feature elimination strategy, it 
computes the ranking weights for all the features and 
eliminates the features that have the lowest weight [41]. As 
MFN is sparse, 75% of less discriminative or non-
discriminative features were eliminated and the rest of 
them were further evaluated using SVM-RFE. The 
classification performance of MFN resulted in an accuracy 
of 96.42% for CN vs AD, 96.37% for CN vs MCI, 70.52% for 
MCI vs AD, and 65.61% for sMCI vs pMCI. The classification 
performance increased when then the connection was 
linked with morphological features and network 
properties, the accuracies of 98.70%, 97.93%, 73.82%, and 
67.42% for CN vs AD, CN vs MCI, MCI vs AD and sMCI vs 
pMCI respectively. 
 

3. DISCUSSION 
  
SVM, ANN, DL algorithms for the classification of AD were 
discussed. Table 1 provides a summary of all the papers we 
have reviewed. The classification was majorly done for CN 
vs AD, CN vs MCI, MCI vs AD, CN vs eMCI, CN vs lMCI, etc. 
The main purpose of this comparison is to compare various 
algorithms. Depending on the dataset, modality, and 
feature extraction methods used the accuracy of 
classification varies. For cross-validation, mostly 10 fold 
validation was used. Each algorithm has its own merits and 
demerits as discussed in Table 2. SVM works efficiently 
when the dataset is small, ANN works efficiently when the 
dataset is large and also small, Deep learning works well 

when the dataset is large.SVM works well with both linear 
and non-linear data whereas ANN and DL work well with 
non-linear data. ANN and DL algorithms have complex 
implementations in comparison to SVM. SVM requires a 
long training period in comparison to ANN and DL. 
 

Table -1: Overview of all algorithms and their accuracies 

Algorithm Papers Target  Dataset 
Accurac

y 

SVM 

Zhu et al. 
[17] 

MCIc vs 
MCInc 

151(70 
MCIc, 81  
MCInc) 

82.50% 

Sheng et 
al. 

[18] 

eMCI vs CN 
96(24 CN, 

24 
 EMCI, 24 

LMCI, 
 24 AD) 

93.80% 

lMCI vs CN 95.80% 

AD vs CN 95.80% 

lMCI vs AD 91.70% 

Peng et 
al. 

[19] 

CN vs AD 189(47 CN, 
93 

 MCI, 49 
AD) 

96.10% 

CN vs MCI 80.30% 

MCI vs AD 76.90% 

Ortiz et 
al. 

[20] 

CN vs AD 249 (68 
CN, 111  
MCI, 70 

AD) 

92% 

CN vs MCI 86% 

MCI vs AD 84% 

Zhang et 
al. 

[21] 

CN vs AD 

213 (51 
CN, 75 

 eMCI, 39 
lMCI,  

and 48 AD) 

89.90% 

CN vs eMCI 88.10% 

CN vs lMCI 100% 

eMCI vs 
lMCI 

92.98% 

eMCI vs AD 84.55% 

lMCI vs AD 97.70% 

 
ANN 

Gorji et 
al. 

[22] 

CN vs AD 
500 (148 
CN, 172 

MCI, 180 
AD). 

97.27% 

MCI vs AD 94.88% 

CN vs MCI 95.59% 

Liu et al. 
[24] 

CN vs AD 
710 (200 
AD, 120  

MCIc, 160 
MCInc, 

 and 230 
NC). 

95.37% 

MCI vs AD 90.41% 

CN vs MCI 86.56% 

MCIc vs 
MCInc 

73.95% 

Cheng et CN vs AD 807 (186 94.70% 
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al. 
[25] 

CN vs MCI AD,  
 167 pMCI, 
228 sMCI, 
and 226 

NC) 

81.50% 

pMCI vs 
sMCI 

73.80% 

Cheng et 
al.[26] 

CN vs AD 

406 (112 
CN, 86 

pMCI, 106 
sMCI, 102 

AD) 

95.20% 

CN vs MCI 82.40% 

pMCI vs 
sMCI 

76.30% 

MCI vs AD 76.70% 

DL 

 Suk et al. 
[27] 

AD vs CN 

202 (51 
AD, 99 

 MCI, 43 
MCIc, 56 
MCInc, 
 52 CN) 

98.80% 

MCI vs CN 90.70% 

AD vs MCI 83.70% 

MCIc vs 
MCInc 

83.30% 

Hosseini 
et al. 
[28] 

AD vs CN 

210 (70 
AD,70 
 CN, 70 

MCI) 

99.30% 

MCI vs CN 94.20% 

AD vs MCI 100% 

AD + MCI vs 
CN 

95.70% 

AD vs MCI 
vs CN 

94.80% 

Zheng et 
al. 

[29] 
AD vs CN 

103 (51 
AD, 52 CN) 

97.27% 

Zheng et 
al. 

[30] 

CN vs AD 

528 (165 
CN, 142 
AD, 95 
sMCI, 

 126 pMCI) 

98.70% 

CN vs MCI 97.93% 

MCI vs AD 73.82% 

sMCI vs 
pMCI 

67.42% 

             
Table -2: Merits and Demerits of algorithms 

Algorithm Merits Demerits 

SVM ● The accuracy 
obtained is high. 

● Non-Linear data 

● Large datasets 
take a long 
time. 

can be efficiently 
handled using 
Kernel tricks. 

● SVM is stable. 

● Feature scaling 
is required 

● Large datasets 
are not scaled 

● A lot of 
memory is 
used.  

ANN ● Scales well to 
larger and smaller 
datasets. 

● Less training is 
required. 

● Paved a way for 
Deep Learning. 

● Interpreting 
the model is 
difficult. 

● They are 
computationall
y rigorous to 
train. 

DL ● Feature 
engineering is not 
required 

● Unstructured data 
is efficiently used. 

● High-quality 
results. 

● Very expensive 
to implement. 

● Expensive 
GPUs are 
required 

 
 

 
4. CONCLUSION 
 
Machine Learning has gained a lot of popularity and a 
commensurate amount of developments have paved a path 
of machine learning to be a major part of Health Care, 
detection and diagnosis of many diseases, developing new 
procedures aiding health care. This paper is an attempt to 
compare three machine learning algorithms: Support 
Vector Machine (SVM), Artificial Neural Networks (ANN), 
Deep Learning (DL), all these algorithms were used to 
classify various stages of Alzheimer’s Disease. It is 
observed that more research can be done in the 
classification of eMCI vs lMCI and sMCI vs pMCI. It is 
observed that abundant research is available in the 
classification of CN vs AD and CN vs MCI. We aim to 
compare more machine learning algorithms for the 
detection and diagnosis of Alzheimer’s Disease in our 
future work. 
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