
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 175

MalAnalytics: A Signature based Analytic System to Collect, Extract, Analyze

and Associate Android Malware

PRATIK JUNNARKAR1, AYUSHI SORTE2

---***--
Abstract: Smartphones are quickly turning out to be key gadgets for some clients. Lamentably, they likewise become fruitful
justification for programmers to send malware. There is a critical need to have a "security logical and measurable framework"
which can encourage investigators to analyze, dismember, partner and connect enormous number of portable applications. A
powerful explanatory framework needs to address the accompanying inquiries:

How to naturally gather and deal with a high volume of portable malware?

How to break down a zero-day dubious application, and contrast or partner it and existing malware families in the database?

In this paper, we present the plan and execution of Mal Analytics, a mark based scientific framework to consequently gather, oversee,
examine and remove android malware.

Introduction:

Cell phones are turning out to be winning gadgets for some individuals. Tragically, malware on cell phones is likewise expanding at an
exceptional rate. Android OS-based frameworks, being the most famous stage for cell phones, have been a famous objective for
malware engineers. In spite of the fact that there are number of works which center around Android malware location by means of
authorization spillage, it is similarly critical to plan a framework that can perform thorough malware examination: break down and
dismember dubious applications at the opcode level (rather at the consent level), and connect the application with existing
malware in the database to decide if it is changed malware or zero-day malware, just as which real applications are tainted.

Challenges:

To understand a compelling investigative framework for Android portable applications, we have to beat a few specialized
obstacles.

In the first place, how to efficiently gather malware from nature.

The subsequent obstacle is the manner by which to distinguish repackaged applications (or changed malware) from the huge
expanse of uses and malware.

The third obstacle is the way to relate a malware with existing malware (or application) to encourage security examination.

Design & Implementation of MalAnalytics :

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 176

The Architecture of MalAnalytics Building Blocks of MalAnalytics :

Extensible Crawler: Users can indicate official or outsider commercial centers, just as blog destinations and the crawler will perform
ordinary portable application download. The crawler empowers us to efficiently develop the versatile applications database for
malware investigation and affiliation.

Dynamic Payloads Detector: To manage malware which powerfully downloads noxious codes by means of the Internet or connection
records, we have executed the dynamic payloads finder segment, which decides malignant trigger code inside malware bundles and
tracks the downloaded application and its conduct in virtual machine.

Android App Information (AIS) Parser: AIS is an information structure inside MalAnalytics and it is utilized to speak to .apk data
structure. Utilizing the AIS parser, experts can uncover the cryptographic hash (or other essential mark) of an .apk record, its
bundle name, authorization data, communicate recipient data and dismantled code . . . and so on.

Signature Generator: Anti-Virus organizations as a rule utilize cryptographic hash, e.g., MD5, to create a mark for an application. This
has two significant downsides.

Right off the bat, programmers can undoubtedly transform an application and change its cryptographic hash.

Also, the cryptographic hash doesn't give adequate adaptability to security investigation. In MalAnalytics, we utilize a three-level
mark age plan to recognize every application.

(a) Android API calls table: Our framework utilizes the API calls table of the Android SDK. The android.jar document is the system
bundle gave by the Android SDK. We utilize the Java reflection to acquire all portrayals of the API calls.

(b) Disassembling process: Each Android application is made out of various classes and each class is made out of various strategies.
To create marks for each class or strategy, MalAnalytics first dismantles an .apk document, at that point takes the Dalvik opcodes
of the

.dex record and changes them to strategies and classes. At that point MalAnalytics utilizes the Android API calls table to create marks.

(c) Generate Lev3 signature (or strategy signature): The framework initially creates a signature for every technique and we
consider this the Lev3 signature. In view of the Android API calls table, the framework separates the API call ID arrangement as a
string in every strategy, at that point hashes this string an incentive to deliver the technique's signature.

(d) Generate Lev2 signature (either class signature or dynamic payload signature): Next, MalAnalytics continues to create the
Lev2 signature for each class, and it depends on the Lev3 signature of techniques inside that class. Malware journalists may utilize
different obscurity or repackaging procedures to change the calling request of the techniques table in a .dex record. To beat this issue,
our mark age calculation will initially sort the level 3 signature inside that class, and afterward connect all these level 3 signature to
shape the level 2 signature.

(e) Generate Lev1 signature (or application signature): Malware scholars may utilize some repackaging or confusion strategies to
change the request for the classes table of the .dex document, our signature calculation will initially sort all Lev2 signature, at that
point link these Lev2 signature to create the Lev1 signature.

Conclusion:

We present MalAnalytics, an Android malware expository framework which can naturally gather malware, create marks for
applications, distinguish vindictive code section (even at the opcode level), and simultaneously, partner the malware under
investigation with different malware and applications in the database. Our mark philosophy gives critical points of interest over
conventional cryptographic hash like MD5-based mark. We tell the best way to utilize MalAnalytics to rapidly recover, relate and
uncover vindictive rationales. Utilizing the consent recursion procedure and class affiliation, we tell the best way to recover the
authorizations of strategies, classes and application (as opposed to essential bundle data), and partner all applications in the opcode
level. Utilizing MalAnalytics, one can without much of a stretch find repackaged applications by means of the closeness score.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 177

REFERENCES:

1. McAfee, “McAfee Threats Report: Fourth Quarter 2011,” Tech. Rep., 2012.

2. Contagio Mobile. [Online]. Available: http://contagiominidump.blogspot.com/

3. M. Zheng, P. P. C. Lee, and J. C. S. Lui, “ADAM: An Automatic and Extensible Platform to Stress Test Android Anti-Virus Systems,”
in Proceedings of the 9th Conference on DIMVA, 2012.

4. Scrapy. [Online]. Available: http://www.scrapy.org

5. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission Re-Delegation: Attacks and Defenses,” in Pro- ceedings of the
20th USENIX conference on Security, 2011.

6. M. Zheng, M. Sun, and J. C. S. Lui, “Droidanalytics: A signature based analytic system to collect, extract, analyze and associate
android malware,” Tech. Rep. [Online]. Available: http://arxiv.org/abs/1302.7212

7. G. McCluskey. (1998) Using Java Reflection. [Online]. Available: http://docs.oracle.com/javase/tutorial/reflect/index

8. Google Inc. Google Play Store. [Online]. Available: https://play.google.com/store

9. AndroidPIT. [Online]. Available: http://www.androidpit.ru

http://contagiominidump.blogspot.com/
http://www.scrapy.org/
http://arxiv.org/abs/1302.7212
http://docs.oracle.com/javase/tutorial/reflect/index
https://play.google.com/store
http://www.androidpit.ru/

