
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 08 | Aug 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4071 
 

A Review on Cross-Site Request Forgery and its Defense Mechanism 

Puneet Kour1 

1Student, Dept. of Computer Science and IT, Jammu University, Jammu and Kashmir, India  
---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract - Cross-Site Request Forgery is also one of the 
topmost vulnerability that is exploited by the hackers to carry 
out cyber attacks. In Cross-site request forgery (CSRF) attack 
the attacker send a malicious link to a legitimate user of a 
website. When the user click that malicious link, a forged 
request is sent on the behalf of the user. This attack on the 
websites have been increased every year and many firms 
become victims of it. Many solutions have been proposed to 
overcome CSRF attacks such as the HTTP header, Random 
Token validation, Client Site Proxy, but hackers are exploiting 
CSRF attack is still going on. In this paper, the author carried 
out a study on the CSRF attack and its defense mechanism. 
This paper also throws light on the merits and the demerit of 
the existing defense mechanism. 

 
Key Words: CSRF Attack, CSRF Tester, CSRF Prevention, 
Vulnerabilities. 
 

1. INTRODUCTION  

Businesses greatly rely on data, information sharing over the 
Internet is everyday business. So, there are securing the 
sensitive data from misuse due to unauthorized access has 
become important. The attackers always keep on looking for 
flaws, vulnerabilities, and bugs in the web applications, 
browsers, servers, and the other components of the web to 
carry out malicious activities. Website Security Statistic 
Report 2015 by WhiteHat [1] shows that 64% of the public 
administration sites, 55% of the food and transportation 
sites are always vulnerable. 86% of web applications had 
authentication issues, access control, and confidentiality as 
per HP 2015 Cyber Risk Report [2]. According to the 2016 
Vulnerability Statistics Report by Edgescan [3], 61% of the 
web application vulnerabilities lead to browser attacks. 
Internet Security Threat Report 2017 by Symantec [4] 
concludes that approximately 90-95 new vulnerabilities are 
discovered every week.  

One of the best-known Web Application vulnerabilities is 
Cross-Site Request Forgery (CSRF). According to the Open 
Web Application Security Project (OWASP) [5], cross-site 
request forgery is listed as one of the top 10 web application 
vulnerabilities leading to a security breach in a past few 
years. The top most web vulnerabilities as per OWSAP are 
shown in Table 1.  

 

 

Table -1: Top 10 web vulnerability as per OWASP 

 

The Cross-Site Request Forgery (CSRF) attack was first 
introduced by Peter Watkins in June 2001 posting to the 
Bugtraq mailing list [6]. CSRF attack also known as XSRF, Sea 
Surf, Confused Deputy, One-click Attack, or Session Riding 
[7]. CSRF flaws exploit cookies, browser authentication, or 
client-side certificates to authenticate attackers. Attacker 
tricks the web browser into un-notically executing an 
unwanted instruction in an application to which a user is 
logged in.  

In a successful CSRF attack against the authenticated user, an 
attacker initiates arbitrary HTTP request using the user 
credentials to the vulnerable web application and 
compromises the end-user data that effectively bypasses the 
underlying authentication mechanism operation. If the 
victim account has administrator rights, this attack can 
compromise the entire web application [8]. The Fig.1 shows 
the processing of CSRF attack:  

 

 

 

 

S. No. OWSAP TOP 10 VULNERABILITIES 

1. Injection 

2. Broken Authentication and Session 
Management 

3. Cross-Site Scripting (XSS) 

4. Insecure Direct Object References 

5. Securing Misconfiguration 

6. Sensitive Data Exposure 

7. Missing Function Level Access Control 

8. Cross-Site Request Forgery (CSRF) 

9. Using Known Vulnerable Components 

10. Unvalidated Redirects and Forwards 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 08 | Aug 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4072 
 

 

 

 

 Send Login Request 

 

 Visit Malicious Return Login Response  
 Website with Cookies 
  
 Send Malicious 
 Script Send Forged Request 
 with Cookies 
  

 

Fig -1: Processing of CSRF attack 

2. RELATED WORK 

The goal of the CSRF attack is by intrusion, to execute 
unwanted instructions on a web application in which victim 
is currently authenticated. Various defense mechanisms has 
been proposed by the researchers research some of them are 
listed as: 
 
Wasim Akram Shaik, Rajesh Pasupuleti [9] proposed a novel 
approach for avoiding CSRF attack using TowFish security, 
by which the user can easily recognize whether the website 
is vulnerable to the attack. The TwoFish security approach 
work in two phases, in the first phase MD5 encryption is 
used to calculate a hash value for URL and in second phase 
image-based authentication is used to validate the image of 
the respective website. 
 
Emil Semastin, Sami Azam et.al. [10] proposed a solution 
that integrates the passing an unpredictable token through a 
hidden layer and validates the hidden layer on the server-
side with the passing token through URL which can offer 
double-layer protection against Cross-Site Request Forgery 
attack. 
 
Jaya Gupta, Suneeta Gola [11] presented server-side 
protection again CSRF attack and implement a hybrid 
approach which is named as CSRF gateway in which token is 
generated when the HTTP request is generated by the user 
on the server-side, it creates a session and embeds token to 
the session using custom tag library which provides the 
more secured way to insert token and application detects the 
CSRF attack has been occurred or not and sends the user 
back to the login page. 
 
Ramarao R. et.al. [12] proposed a client-side proxy solution 
that detects and prevents CSRF attack using HTML elements 
which are used to access the graphic images of the webpage. 

The client-side proxy is also able to examine and alter client 
requests. 
 
Nikunj. J. Tandel, Kalpesh M. Patel [13] presented a review 
on CSRF attack, and its existing CSRF defensive mechanisms 
like secret validation token, referer headers, custom HTTP 
headers, and origin headers and culminate to build a robust 
CSRF defensive mechanism. 
 
Boyan Chen, Pavol Zavarsky et.al. [14] examined the open 
source CSRF defense mechanism named CSRF Guard and 
analyzing some scenarios where CSRF Guard should be 
implemented and how it able to block CSRF vulnerabilities, 
explores limitations of CSRF Guard and some approaches to 
bypass The CSRF Guard. 
 
Adam Barth, Collin Jackson, Mitchell Stanford [15] study 
CSRF vulnerabilities contain login CSRF vulnerabilities and 
provided three major CSRF defense techniques in which the 
HTTP Referer header could provide an effective defense 
solution in their experiment. 
 
Sheeghrata Agnihotri, Pawan Patidar [16] proposed a client-
server mutual authentication technique in which 
identification and authentication steps are separated. An 
authentication token is provided to each user and token is 
provided to the user in the form of an image which is 
encoded and decode using base64encoding and decoding 
technique. 
 
In the above section, many author present different 
mechanisms to prevent this type of CSRF attack. Now, we are 
going to present a review of the CSRF attack and its defense 
mechanism. 
 

3. CATOGRIES OF CSRF  

As we know CSRF is one of the powerful vulnerabilities in 
web applications in which an attacker performs an 
unwanted action to the victim browser without the 
knowledge of the user. This vulnerability is categories as 
following: 

3.1 Stored CSRF  

A stored CSRF is one where the attacker can use the 
application itself and provide an exploit link, or the other 
content which directs the victim’s browser to perform 
attacker-controlled action in the web application. Stored 
CSRF vulnerabilities are more likely to succeed since the 
user who receives the exploit content or link is almost 
certainly currently authenticated to perform action [10]. Any 
application that uses HTML tags is vulnerable to CSRF 
attacks. An attacker stores the malicious code using LINK, 
IMG, IFRAME, or SCRIP tags. Examples of such are shown 
below: 

 <link> tag  

Attacker 

Website 

 

Victim 

Browser 

 

Targeted 

Website 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 08 | Aug 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4073 
 

<a href = “http://127.0.0.1/xyz.php”> CLICK HERE 
TO GET REWARD </a> 

 <img> tag 
<img scr = http://127.0.0.1/xyz.php height = 
100% width =100% /> 

 <iframe> tag 
<iframe scr = http://127.0.0.1/xyz.php height 
=100% width =100%> 
</iframe> 

 <form> tag 
<form action = http://127.0.0.1/xyz.php method = 
“POST”> 
</form> 

 <script> tag 
<script> 
document.location = 
http://127.0.0.1/xyz.php/?password_new=123ab
c&password_conf=123abc&Change=Change#; 
</script> 

3.2 Reflected CSRF 

In this type of Reflected CSRF, the attacker uses a system 
outside the application to bare the victim to exploit links. 
This can be done using an email message, a blog, an instant 
message, or even an advertisement posted in a public with a 
URL that a victim type in. This attack will be a failure, as 
users may not be currently logged into the target system 
when the exploit is tried. The trial from a reflected CSRF 
attack may be under the control of the attacker and could be 
deleted once the exploit was completed. Here the page can 
be submitted automatically. Example of such, are shown 
below:  

 Auto Post Forms 
<body onload = “document.form[0].submit()”> 
<form method = “POST” action= 
“http://127.0.0.1/xyz.php”> 
<input type = “hidden” name = “xyz” value = 
“987ads”/> 
</form> 

In a login CSRF attack, personal data of victims is collected. 
The main thing is this type of attack both the user and the 
attacker are authorized, users. But the attacker will send his 
identity to the user through some link. Thus users will now 
enter using the attacker’s identity. Then all the information 
related to the user will get stored in the user browser, but 
actually in the attacker identity. Now, the attacker will see 
this information on the user. Therefore, they input personal 
data to the webserver such as credit card numbers or search 
keywords. Moreover, by using a Gadget, adversaries can 
execute malicious gadgets registered to the adversaries’ 
accounts within the victim’s local machine. Both CSRF and 
Login CSRF are ingenious exploitations based on the 
common belief that every web request made by a browser is 

initiated under users’ supervision. However, in the real 
world, there are many ways for malicious adversaries to 
instigate page requests from the victim’s browser [8]. 

 <form action= https://www.xyz.com/ 
method=POST target=invisibleframe> <input 
name=username value=attacker> <input 
name=password value=xyz>  
</form> 
 <script> 
document.forms [0].submit( )  
</submit> 

4. EXISTING DEFENSE MECHANISMS 

Some defense policies are to b adopted by users and 
developers to get rid of such type of attack to some extent. 
The following defense mechanisms are: 

 Use Logout Policy- If users want to move to some 
other site (any website or it may be the untrusted 
website), logoff web application which is not in use. 
It will automatically logout from currently using the 
site. So that the user wants to login again. 

 Use POST form rather than GET- In GET forms 
values and variables in URL are visible to anybody, 
instead of GET use POST forms for secure 
submission. 

 Use Random Token value in the code- Passing 
pseudo-random token through the hidden field is 
considered as the most effective solution to prevent 
against CSRF attack. At the server-side, the token is 
matched with the token in the session. If both 
tokens are matched, then it will be understood that 
request is generated from the same origin. 

 Use Random Token value in the URL- Passing the 
unpredictable random token through URL is the 
next effective solution to prevent against CSRF 
attack. 

 Use Random Token value in the cookies- We know 
every time cookies are generated when the user is 
logged in to the website. This technique is simple to 
implement when a user login to the website, the site 
should generate a random token value and set it as 
a cookie on both the user’s machine and at the 
server-side. With each transaction request by the 
user the token value is matched at the server-side, 
the server accepts it as a legitimate request or it 
would reject the request. 

 Use Referer Header- An HTTP request’s Header 
Referer indicates the URL of the webpage which 
contained the HTML link or form that was 
responsible for the request's creation. The Referer 
is communicated through the HTTP header. If the 
Referer Header present, it distinguishes the original 
request from the cross-site request because it 
contains the URL of the Request. A site can protect 

3.3 Login CSRF 

http://127.0.0.1/xyz.php
http://127.0.0.1/xyz.php
http://127.0.0.1/xyz.php
http://127.0.0.1/xyz.php
http://127.0.0.1/xyz.php/?password_new=123abc&password_conf=123abc&Change=Change
http://127.0.0.1/xyz.php/?password_new=123abc&password_conf=123abc&Change=Change
http://127.0.0.1/xyz.php
https://www.xyz.com/


          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 08 | Aug 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4074 
 

against cross-site request forgery attacks by 
checking whether the request was issued by the site 
itself or not. If this is not the matching case, the 
request is usually rejected [17]. 

 Use Custom HTTP Headers- Custom HTTP headers 
can be used to prevent CSRF attack because the 
browser feature prevents sites from sending custom 
HTTP headers to another site, but allows other sites 
to send custom HTTP headers to themselves using 
AJAX (XMLHttpRequest) [17]. For example, the 
header.js JavaScript library uses this approach and 
attaches the X-Requested By header with the 
XMLHttpRequest value. Google Web Toolkit also 
endorses that web developers protect against CSRF 
attacks by attaching an X-XSRF-Cookie header to 
XMLHttpRequest that contains a cookie value.  
To use custom headers as a CSRF defense, a site 
must issue all state-updating requests using 
XMLHttpRequest, attach the custom header, and 
reject all state-updating requests that are not 
attached with the header. For example, to defend 
against login CSRF, the site must send the user's 

authentication credentials to the server via 
XMLHttpRequest [18]. 
 

 Use Origin header- If the origin header is present, 
browsers send Origin header with POST requests 
that check the origin that initiated the request. If the 
browser is unable to specify the origin, the browse 
sends the null value. 

 
Table -2: Merits and the demerits of existing defense mechanism  

 

 

 

 

 

 

 

 

 

 

 

 5. DISCUSSION 

In the end, we conclude that there is still a need for some 
relevant solution to get scour of this type of CSRF attack 
because every year hackers find out another approach to 
revivify the attack successfully. Many authors study to 
overcome the CSRF attack, also the above word can be 
extended to provide better solutions for CSRF attack by 
means of parsing techniques to identify the attacking spots 
before the attacker attack. 

 

6. CONCLUSIONS 

We know the need for the internet is increasing day-by-day 
but at the same time, the attacks also increasing. Users 
should be aware of such vulnerabilities on the internet. 
Cross-Site Request Forgery is one such vulnerability and 
these attacks can be easily executed by the attackers by 
simply executing a malicious script on the victim browser. 
Existing solutions and defense mechanisms to mitigate CSRF 
attacks do not provide complete protection. The above work 
can be extended to provide some better solutions against 

Existing Solution Merits Demerits 

Use Post Forms 
 

Secure submission of form 
values 

Do not remain in the 
browser history 

Client-server proxy Easy to find attack It would not detect login 
CSRF 

Captcha Easy to use for auto submission 
of HTNL forms 

Expensive and required 
more memory 

Random Validation Token Extremely simple to implement Random tokens would 
not detect Login CSRF 

Use Referer Header Easy to implement Not all browsers 
support this header 

Custom HTTP Header Use to find same site request 
and CSRF 

Many browsers doesn’t 
support custom header 

Origin Header Another way to find same site 
request 

Many browsers disable 
to suppoet header 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 08 | Aug 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4075 
 

CSRF attack or may combine two defense mechanisms in the 
future. 

REFERENCES 

[1] WhiteHat Security, Inc., Website Security Statistics 
Report (2015), Santa Clara, CA 95054, 2015. 
https://www.prnewswire.com/news-
releahttps://www.prnewswire.com/news-
releases/whitehat-security-2015-website-security-
statistics-report-reveals-the-need-to-identify-security-
metrics-most-important-for-vulnerability-remediation-
300086119.html 
 

[2] HP Security Research, “Cyber Risk Report”, 2015. 
https://www.govtech.com/library/papers/HP-Security-
Research-Cyber-Risk-Report-2015-1480.html 
 

[3] BCC Risk Advisory Ltd., Vulnerability Statistics Report 
Edgescan, 2016, http://www.edgescan.com 
 

[4] Symantec Corporation, Internet Security Threat Report, 
2017. http://www.symantec.com/threatreport/ 
 

[5] OWASP (Open web application security project) top ten 
project, http://www.owasp.org/index.php/ Category: 
OWASP-Top_Ten_Project; 2013 
http://www.owasp.org/index.php/CrossSiteRequestFor
gery 
 

[6] P.W. Cross Site Request Forgeries, 2001. 
www.securityfocus.com 
  

[7] Kafer K. (2008). Cross Site Request Forgery. Technical 
report, Hasso-Plattner-Institute.  
 

[8] Sentamilselvan  K,  Dr.  S.  Lakshamana  Pandian,  
Dr.  K.  Sathiyamurthy,  Survey  on Cross  Site 
Request  Forgery,  International  Conference on 
Research  and Development  Prospects  on 
Research  on Engineering  and Technology ,  pp.  
159-164, 2013. 
 

[9] Wasim Akram Shaik, Rajesh Pasupuleti, Avoiding Cross 
Site Request Forgery (CSRF) Attack Using TwoFish 
Security Approach, International Journal of Computer 
Trends and Technology, pp. 68-72, 2015. 
 

[10] E. Semastin, S. Azam, B. Shanmugan, K. Kannoorpatti, M. 
Jonokman, G. N. Samy, S. Perumal, “Prevention Measures 
for Cross Site Request Forgery Attacks on Web-based 
Applications”, Indian Journal of Engineering and 
Technology, pp. 130-134, 2018. 
 

[11] J. Gupta, S. Gola, “Server Side Protection againstCross 
Site Request Forgery using CSRF Gateway:, Journal 
Information Technology & Software Engineering, 2016.  

 
[12] Ramarao R. Tool , “Preventing Image Based CSRF attacks 

2009. 
  

[13] N. J. Tandel, Prof. K. M. Patel, ”Defensive Mechanisms of 
CSRF Attack”, International Journal of Engineering 
Development and Research, pp. 734-737, 2014. 
 

[14] B. Chen, P. Zavarsky, R. Ruhl and D. Lindskog, “ A Study 
of the Effectiveness of CSRF Guard”, IEEE International 
Conference on Privacy, Security, Risk, and Trust, and 
IEEE International Conference on Social Computing, pp. 
1269-1272, 2011. 
 

[15]  A. Barth, C. Jackson, M. Stanford, “Robust Defenses for 
Cross-Site Request Forgery”, Association for Computing 
Machinery ACM, 2008. 
 

[16] S. Adnihotri, P. Patidar, “Prevention against CSRF Attack 
using Client Server Mutual Authentication Technique”, 
International Journal of Engineering Science and 
Computing, pp. 20393-20398, 2009. 
 

[17] X. Lin, P. Zavarsky, R. Ruhl, D. Lindskog, "Threat 
Modeling for CSRF Attacks", IEEE International 
Conference Computational Science and Engineering, 
2009. 
 

[18] N. J .  Tandel ,  K.  M.  Patel ,  ”Defensive 
Mechanisms of  CSRF Attack”,  International  
Journal  of Engineering  Development  and 
Research,  pp.  734-737,  2014. 
 

[19] K. R. Suneetha, R. Krishnamoorthi, "Identifying User 
Behavior by Analyzing Web Server Access Log File", 
International Journal of Computer Science and Network 
Security(UCSNS), Vol. 9, Issue 4, 2009. 

 
 

 

https://www.prnewswire.com/news-releahttps:/www.prnewswire.com/news-releases/whitehat-security-2015-website-security-statistics-report-reveals-the-need-to-identify-security-metrics-most-important-for-vulnerability-remediation-300086119.html
https://www.prnewswire.com/news-releahttps:/www.prnewswire.com/news-releases/whitehat-security-2015-website-security-statistics-report-reveals-the-need-to-identify-security-metrics-most-important-for-vulnerability-remediation-300086119.html
https://www.prnewswire.com/news-releahttps:/www.prnewswire.com/news-releases/whitehat-security-2015-website-security-statistics-report-reveals-the-need-to-identify-security-metrics-most-important-for-vulnerability-remediation-300086119.html
https://www.prnewswire.com/news-releahttps:/www.prnewswire.com/news-releases/whitehat-security-2015-website-security-statistics-report-reveals-the-need-to-identify-security-metrics-most-important-for-vulnerability-remediation-300086119.html
https://www.prnewswire.com/news-releahttps:/www.prnewswire.com/news-releases/whitehat-security-2015-website-security-statistics-report-reveals-the-need-to-identify-security-metrics-most-important-for-vulnerability-remediation-300086119.html
https://www.prnewswire.com/news-releahttps:/www.prnewswire.com/news-releases/whitehat-security-2015-website-security-statistics-report-reveals-the-need-to-identify-security-metrics-most-important-for-vulnerability-remediation-300086119.html
https://www.govtech.com/library/papers/HP-Security-Research-Cyber-Risk-Report-2015-1480.html
https://www.govtech.com/library/papers/HP-Security-Research-Cyber-Risk-Report-2015-1480.html
http://www.edgescan.com/
http://www.symantec.com/threatreport/
http://www.owasp.org/index.php/
http://www.owasp.org/index.php/CrossSiteRequestForgery
http://www.owasp.org/index.php/CrossSiteRequestForgery
http://www.securityfocus.com/

