
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 419

An Efficient Design of Fault-Tolerance for Matrix–Vector Multiplications

P. Benesh Selva Nesan1, S.Soban2

1Assistant Professor of ECE, ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY
2Assistant Professor of ECE, ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

---***---
Abstract — Equal lattice handling is a run of the mill
activity in numerous frameworks, and specifically grid
vector augmentation (MVM) is one of the most widely
recognized tasks in the advanced computerized signal
preparing and advanced correspondence frameworks. This
paper proposes a fault tolerant plan for number equal
MVMs. The plan consolidates thoughts from mistake
rectification codes with oneself checking capacity of MVM.
Field-programmable entryway exhibit assessment shows
that the proposed plan can fundamentally decrease the
overheads contrasted with the security of each MVM all
alone. In this way, the proposed strategy can be utilized to
lessen the expense of giving adaptation to internal failure in
down to earth usage.

Key Words: Fault tolerance, matrix–vector
multiplications (MVMs), parallel processing, soft
errors.

1. INTRODUCTION

Matrix Vector Multiplication (MVM) is an average
calculation in space change, projection, or highlight
extraction [1], [2]. With expanding interest for elite or
throughput, equal registering is getting progressively
significant in superior figuring frameworks, distributed
computing frameworks, and correspondence
frameworks [3], [4]. For instance, equal lattice handling
with a typical information vector (equal MVMs) is
performed for precoding in multiuser multi-in multi-out
(MIMO) (particularly enormous scope MIMO) [5]–[7]
and elite low thickness equality check decoders [8], [9].
Equal handling may run on countless preparing units,
e.g., GPUs or disseminated frameworks, and
investigations show that delicate mistakes can influence
the yields [10], [11].Adaptation to non-critical failure for
the network handling has generally been examined [11]–
[17]. References [11]–[14] center around calculation
based faulttolerance (ABFT) methods for framework
lattice augmentation. In this ABFT structure, the two info
grids are changed to a "line checksum" framework and a
"section checksum" network, separately, and single
blunders in the subsequent "full checksum" lattice can be
distinguished and rectified dependent on its line
checksum and segment checksum [12]. Reference [15]

gives an overall model to such procedures. Since the line
checksum doesn't exist for an info vector, such ABFT
plan must be utilized for mistake location in MVM. In the
ABFT schemes proposed in [16], checksum technique is
used to locate the affected result element or blocks of
result elements in MVM, and partial recomputation is
used for error correction. Such schemes are suitable for
the cases in which the delay introduced by
recomputation is acceptable. But this is not always the
case, especially in high-throughput communication
receivers where the inputs arrive in real time from A/D
converters. A general method to protect linear dynamic
systems was proposed. Part of that system model can be
extracted as an MVM. A method to protect parallel digital
filters was proposed. The scheme is based on
considering each filter as a bit in an error correction
code (ECC) so that parity check filters are added and
used to detect and correct errors.

Fig-1 STRUCTURE OF SCHEME 2 PARALLEL MVM

2. METHODOLOGIES

In a recent technology of Digital Signal processing
application method, will increasing demand in high
performance computing system, cloud computing and
communication systems, in this method a multiplication
is highest priority in all arithmetic process, due to this
multiplication, a vector and matrix vector multiplication
is one of a typical computation domain regarding

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 420

transformation, projection and feature extraction, and its
perform pre-coding method in multiuser multi-in multi-
out(MIMO) applications. In this method of Matrix Vector
Multiplication, a fault tolerance error will occur on the
time of transmission and reception, respectively. Here, a
proposed work will have reduce this error and overcome
a method of single fault error correction to multiple fault
error correction with considered BCH Code, it have
capable to detect and correct a Multiple Fault correction ,
and it will use matrices to extend idea from Hamming
and Reed-Solomon Codes, with detect many error in
MVM. In this method to implement in VHDL and
Synthesized in Xilinx FPGA S6LX9, finally compared with
Hamming method of Single fault error correction and
shown in terms of area, delay and power.

2.1 Implementation of the Matrix–Vector
Multiplication
The structure of the MVM is shown in Fig. 2. A sequential
procedure is applied to resource efficiency. For each cycle,
a column of matrix Ap is read into the data registers (a0 to
a19 in Fig. 4), and the product with the corresponding item
in u¯(ui in Fig. 2) is calculated. A cycle counter is used to
control a group of selectors. Before the counter reaches M,
port 1 of each selector is selected so that the result is
accumulated. When the counter reaches M, port 0 of each
selector is selected to output the result vector. For MVM
between an N × M matrix and an M ×1 vector, N multipliers
and N adders are needed in the structure, and an N × 1
vector is generated every M cycles. The results of the
MVMs under protection are 21-bit integers.

Fig-2 Implementation structure of MVM (N=20)

Fig-3 Structure of fault recovery for separate

protection

2.2 Implementation of the Proposed Scheme
The implementation structure of the proposed scheme for
P parallel MVMs is shown in Fig. 4 (P=4). The calculation of
D¯ u (D is a 3 ×30 matrix) and A¯ u (A is a 20 ×30 matrix)
also apply the MVM module in Fig. 4. For each cycle, one
column for each of the four matrices (Max_in1 to Max_in4)
and the corresponding item (ui) from vector ¯ u is read into
the module.

For the detection branch, each of the four input columns
are accumulated by the Col_Sum module, getting c1

i , c2
i, c3

i
and c4

i (13-bit integers). Then the ith column (3 ×1) of the
detection matrix D is generated according to a Hamming
code. The items in D are 15-bit integers, and the items in
the result vector of D¯ u are 28-bit integers.

Fig-4 Implementation Structure for fault recovery
in the proposed system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 421

2.3 BCH codes

BCH codes use variant check matrices to extend ideas from
Hamming and Reed-Solomon codes. BCH codes can keep a
fixed alphabet, and correct many errors. Unfortunately,
BCH codes suffer from the same shortcoming as Hamming
and RS codes: as block size increases, they become worse
and worse in the sense that the relative error correction
rate goes to 0 (and/or information rate goes to 0). Start
with a finite field Fq with q elements, often q = 2. Choose
block size n, for simplicity relatively prime to q. For q = 2,
look at odd block sizes.

RESULT AND DISCUSSION

The separate protection (or scheme 1) and the proposed
scheme (scheme 2) are implemented for 4 and 8 parallel
MVMs, respectively, using Verilog in Vivado2014.4 for
Xilinx xc7vx485tffg1157-1 with option of area
optimization. In particular, each matrix has 20 rows (N =
20) and 30 columns (M = 30), and both the matrix and
vector items are 8-bit integers. Both the matrix items and
the vector items are uniformly distributed between −128
and 127. All the intermediate and final results are
assigned enough bits so that no rounding is applied during
the operations.

Fig-5 Hamming output

Fig-6 BCH output

 LU

T
Occupi
ed
Slice

IO
B

Fano
ut

Power(
mw)

Delay(
ns)

Hammi
ng

242 130 33 3.89 25 25.993

BCH 140
3

732 99 3.75 25 63.479

Table-1 Comparison between existing and

proposed system

Fig-7 Performance graph

CONCLUSION

In this paper, a fault tolerant plan for equal MVMs was
proposed. The plan joins the lattice self-checking
(checksum) and the utilization of the mistake remedy
coding. FPGA-based assessment shows that the proposed
plan can lessen the overhead required by up to 20% and
40% contrasted with discrete assurance, for 4 and 8 equal
MVMs, separately. This preferred position would be bigger
for progressively equal branches. In spite of the fact that
this paper just exhibits the plan for the case that only one
MVM comes up short, it very well may be stretched out to

0

500

1000

1500 LUT

Occupied Slice

IOB

Fanout

Power(mw)

Delay(ns)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 422

the case that different MVMs bomb by choosing the codes
with bigger separation.

REFERENCES

[1] A. V. Oppenheim and R. W. Schafer, Discrete-Time
Signal Processing. Englewood Cliffs, NJ, USA: Prentice-Hall,
1989.
[2] J. S. Lim, Two-Dimensional Digital Signal Processing.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1989.
[3] A. Grama, A. Gupta, G. Karypis, and V. Kumar,
Introduction to Parallel Computing, 2nd ed. London, U.K.:
Pearson, Jan. 2003.
[4] K. K. Parhi, VLSI Digital Signal Processing Systems:
Design and Implementation. Hoboken, NJ, USA: Wiley,
1999.
[5] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A. M.
Vidal, “Fully parallel GPU implementation of a fixed-
complexity soft-output MIMO detector,” IEEE Trans. Veh.
Technol., vol. 61, no. 8, pp. 3796–3800, Oct. 2012.
[6] Q. Qi and C. Chakrabarti, “Parallel high throughput soft-
output sphere decoder,” in Proc. IEEE Workshop Signal
Process. Syst., Oct. 2010, pp. 174–179.
[7] M. Wu, C. Dick, and J. R. Cavallaro, “Improving MIMO
sphere detection through antenna detection order
scheduling,” in Proc. SDR Forum, 2011, pp. 280–284.
[8] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, “A massively
parallel implementation of QC-LDPC decoder on GPU,” in
Proc. IEEE 9th Symp. Appl. Specific Process. (SASP), Jun.
2011, pp. 82–85.
[9] G. Wang, H. Shen, B. Yin, M. Wu, Y. Sun, and J. R.
Cavallaro, “Parallel nonbinary LDPC decoding on GPU,” in
Proc. ASILOMAR Conf., Nov. 2012, pp. 1277–1281.
[10] I. S. Haque and V. S. Pande, “Hard data on soft errors:
A largescale assessment of real-world error rates in
GPGPU,” in Proc. 10th IEEE/ACM Int. Conf. Cluster, Cloud
Grid Comput. (CCGrid), May 2010, pp. 691–696.
[11] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An efficient
and experimentally tuned software-based hardening
strategy for matrix multiplication on GPUs,” IEEE Trans.
Nucl. Sci., vol. 60, no. 4, pp. 2797–2804, Aug. 2013.
[12] K.-H. Huang and J. A. Abraham, “Algorithm-based fault
tolerance for matrix operations,” IEEE Trans. Comput., vol.
C-33, no. 6, pp. 518–528, Jun. 1984.
[13] C. Ding, C. Karlsson, H. Liu, T. Davies, and Z. Chen,
“Matrix multiplication on GPUs with on-line fault
tolerance,” in Proc. IEEE 9th Int. Symp. Parallel Distrib.
Process. Appl., May 2011, pp. 311–317.
[14] P. Wu, C. Ding, L. Chen, T. Davies, C. Karlsson, and Z.
Chen, “On-line soft error correction in matrix–matrix
multiplication,” J. Comput. Sci., vol. 4, no. 6, pp. 465–472,
Nov. 2013.
[15] C. J. Anfinson and F. T. Luk, “A linear algebraic model
of algorithmbased fault tolerance,” IEEE Trans. Comput.,

vol. C-37, no. 12, pp. 1599–1604, Dec. 1988for liver
segmentation and lesions detection,’’ in Deep Learning and
Data Labeling for Medical Applications (Lecture Notes in
Computer Science). Cham, Switzerland: Springer, 2016, pp.
77–85.
[16] J. Sloan, R. Kumar, and G. Bronevetsky, “An
algorithmic approach to error localization and partial
recomputation for low-overhead fault tolerance,” in Proc.
43rd IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2013, pp. 1–12.

