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Abstract — Equal lattice handling is a run of the mill 
activity in numerous frameworks, and specifically grid 
vector augmentation (MVM) is one of the most widely 
recognized tasks in the advanced computerized signal 
preparing and advanced correspondence frameworks. This 
paper proposes a fault tolerant plan for number equal 
MVMs. The plan consolidates thoughts from mistake 
rectification codes with oneself checking capacity of MVM. 
Field-programmable entryway exhibit assessment shows 
that the proposed plan can fundamentally decrease the 
overheads contrasted with the security of each MVM all 
alone. In this way, the proposed strategy can be utilized to 
lessen the expense of giving adaptation to internal failure in 
down to earth usage. 
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1. INTRODUCTION  
 

Matrix Vector Multiplication (MVM) is an average 
calculation in space change, projection, or highlight 
extraction [1], [2]. With expanding interest for elite or 
throughput, equal registering is getting progressively 
significant in superior figuring frameworks, distributed 
computing frameworks, and correspondence 
frameworks [3], [4]. For instance, equal lattice handling 
with a typical information vector (equal MVMs) is 
performed for precoding in multiuser multi-in multi-out 
(MIMO) (particularly enormous scope MIMO) [5]–[7] 
and elite low thickness equality check decoders [8], [9]. 
Equal handling may run on countless preparing units, 
e.g., GPUs or disseminated frameworks, and 
investigations show that delicate mistakes can influence 
the yields [10], [11].Adaptation to non-critical failure for 
the network handling has generally been examined [11]–
[17]. References [11]–[14] center around calculation 
based faulttolerance (ABFT) methods for framework 
lattice augmentation. In this ABFT structure, the two info 
grids are changed to a "line checksum" framework and a 
"section checksum" network, separately, and single 
blunders in the subsequent "full checksum" lattice can be 
distinguished and rectified dependent on its line 
checksum and segment checksum [12]. Reference [15] 

gives an overall model to such procedures. Since the line 
checksum doesn't exist for an info vector, such ABFT 
plan must be utilized for mistake location in MVM. In the 
ABFT schemes proposed in [16], checksum technique is 
used to locate the affected result element or blocks of 
result elements in MVM, and partial recomputation is 
used for error correction. Such schemes are suitable for 
the cases in which the delay introduced by 
recomputation is acceptable. But this is not always the 
case, especially in high-throughput communication 
receivers where the inputs arrive in real time from A/D 
converters. A general method to protect linear dynamic 
systems was proposed. Part of that system model can be 
extracted as an MVM. A method to protect parallel digital 
filters was proposed. The scheme is based on 
considering each filter as a bit in an error correction 
code (ECC) so that parity check filters are added and 
used to detect and correct errors. 

 

 

 

Fig-1 STRUCTURE OF SCHEME 2 PARALLEL MVM 
 
2. METHODOLOGIES 

In a recent technology of Digital Signal processing 
application method, will increasing demand in high 
performance computing system, cloud computing and 
communication systems, in this method a multiplication 
is highest priority in all arithmetic process, due to this 
multiplication, a vector and matrix vector multiplication 
is one of a typical computation domain regarding 
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transformation, projection and feature extraction, and its 
perform pre-coding method in multiuser multi-in multi-
out(MIMO) applications.  In this method of Matrix Vector 
Multiplication, a fault tolerance error will occur on the 
time of transmission and reception, respectively. Here, a 
proposed work will have reduce this error and overcome 
a method of single fault error correction to multiple fault 
error correction with considered BCH Code, it have 
capable to detect and correct a Multiple Fault correction , 
and it will use matrices to extend idea from Hamming 
and Reed-Solomon Codes, with detect many error in 
MVM. In this method to implement in VHDL and 
Synthesized in Xilinx FPGA S6LX9, finally compared with 
Hamming method of Single fault error correction and 
shown in terms of area, delay and power.    

2.1 Implementation of the Matrix–Vector 
Multiplication 
The structure of the MVM is shown in Fig. 2. A sequential 
procedure is applied to resource efficiency. For each cycle, 
a column of matrix Ap is read into the data registers (a0 to 
a19 in Fig. 4), and the product with the corresponding item 
in u¯(ui in Fig. 2) is calculated. A cycle counter is used to 
control a group of selectors. Before the counter reaches M, 
port 1 of each selector is selected so that the result is 
accumulated. When the counter reaches M, port 0 of each 
selector is selected to output the result vector. For MVM 
between an N × M matrix and an M ×1 vector, N multipliers 
and N adders are needed in the structure, and an N × 1 
vector is generated every M cycles. The results of the 
MVMs under protection are 21-bit integers. 
 

 
Fig-2 Implementation structure of MVM (N=20) 

 
Fig-3 Structure of fault recovery for separate 

protection 
 
2.2 Implementation of the Proposed Scheme 
The implementation structure of the proposed scheme for 
P parallel MVMs is shown in Fig. 4 (P=4). The calculation of 
D¯ u (D is a 3 ×30 matrix) and A¯ u (A is a 20 ×30 matrix) 
also apply the MVM module in Fig. 4. For each cycle, one 
column for each of the four matrices (Max_in1 to Max_in4) 
and the corresponding item (ui) from vector ¯ u is read into 
the module.  
 
For the detection branch, each of the four input columns 
are accumulated by the Col_Sum module, getting c1

i , c2
i, c3

i 
and c4

i (13-bit integers). Then the ith column (3 ×1) of the 
detection matrix D is generated according to a Hamming 
code. The items in D are 15-bit integers, and the items in 
the result vector of D¯ u are 28-bit integers.  
 

 
 
 
 
 
 

Fig-4 Implementation Structure for fault recovery 
in the proposed system 

 
 
 
 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

                Volume: 07 Issue: 08 | Aug 2020                 www.irjet.net                                                                              p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 421 

2.3 BCH codes 
 
BCH codes use variant check matrices to extend ideas from 
Hamming and Reed-Solomon codes. BCH codes can keep a 
fixed alphabet, and correct many errors. Unfortunately, 
BCH codes suffer from the same shortcoming as Hamming 
and RS codes: as block size increases, they become worse 
and worse in the sense that the relative error correction 
rate goes to 0 (and/or information rate goes to 0). Start 
with a finite field Fq with q elements, often q = 2. Choose 
block size n, for simplicity relatively prime to q. For q = 2, 
look at odd block sizes. 

 
RESULT AND DISCUSSION 
 
The separate protection (or scheme 1) and the proposed 
scheme (scheme 2) are implemented for 4 and 8 parallel 
MVMs, respectively, using Verilog in Vivado2014.4 for 
Xilinx xc7vx485tffg1157-1 with option of area 
optimization. In particular, each matrix has 20 rows (N = 
20) and 30 columns (M = 30), and both the matrix and 
vector items are 8-bit integers. Both the matrix items and 
the vector items are uniformly distributed between −128 
and 127. All the intermediate and final results are 
assigned enough bits so that no rounding is applied during 
the operations. 
 

 

Fig-5 Hamming output 
 

 
 
 
 
 
 
 
 

Fig-6 BCH output 
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Table-1 Comparison between existing and 

proposed system 
 

 
 

Fig-7 Performance graph 
 
CONCLUSION 
 
In this paper, a fault tolerant plan for equal MVMs was 
proposed. The plan joins the lattice self-checking 
(checksum) and the utilization of the mistake remedy 
coding. FPGA-based assessment shows that the proposed 
plan can lessen the overhead required by up to 20% and 
40% contrasted with discrete assurance, for 4 and 8 equal 
MVMs, separately. This preferred position would be bigger 
for progressively equal branches. In spite of the fact that 
this paper just exhibits the plan for the case that only one 
MVM comes up short, it very well may be stretched out to 
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the case that different MVMs bomb by choosing the codes 
with bigger separation. 
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