
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4437

SEQUENCE TRANSLITERATION USING ENCODER-DECODER MODELS

Kartik Soni1

School of Computer Science and Engineering, Student, Vellore Institute of Technology, Vellore, Tamil Nadu, India
--***---
Abstract - Machine transliteration is an emerging research
area which converts words from one language to another
without losing its phonological characteristics. Transliteration
is a supporting tool for machine translation and Cross
language information retrieval. Transliteration is mainly used
for handling named entities and out of vocabulary words in a
machine translation system. It preserves the phonetic
structure of the words. We propose a modified neural encoder-
decoder model that maximizes parameter sharing across
language pair in order to effectively leverage orthographic
similarity. We also show that Bilingual transliteration models
can generalize well to languages/language pairs not
encountered during training and hence perform well on the
zero shot transliteration task. We have applied this technique
for transliterating English to Hindi and achieved exact Hindi
transliterations for 75-80% of English names.

Key Words: Transliteration, Bilingual, Language.

1. INTRODUCTION

Transliteration converts the text from one script to another.
Transliteration can be seen as two level processes: first
segmenting the source language word into transliteration
units and then aligning and mapping these units to target
language units. For e.g. the word “Mera” which can be
segmented as (m,e,r,a) then these units are transliterated to
target language units. Transliteration is mainly used to
convert the foreign words in a language which are required
to be phonetically but need not to be grammatically
equivalent to the words in another language.

Transliteration simply converts a text from one script to
another. It is not concerned about faithfully representing the
sounds of the original; rather, it focusses on representing the
characters with as much accuracy and unambiguity as
possible. As a technique, transliteration can be seen in two
ways. When one writes native terms using a non-native or
foreign script, it is called forward transliteration. For
example, GULAB (in Devanagari script) is a Hindi word
meaning rose in English. It can be transliterated (written) in
Roman script as gulab , gulaab , goolab or in some other
form. On the other hand, when one represents conversion of
a term back to its native script from a non-native script, it is
called back-transliteration. For example, gulab written in
Roman script is back-transliterated to in its native script.
Forward transliteration allows for creativity of the
transliterator, whereas back-transliteration is ideally strict
and expects the same initial word to be generated (with
some exceptions, especially for East Asian languages).

We propose a compact neural encoder-decoder model for
multilingual transliteration, that is designed to ensure
maximum sharing of parameters across languages while
providing room for learning language-specific parameters.
This allows greater sharing of knowledge across language
pairs by leveraging orthographic similarity. We empirically
show that models with maximal parameter sharing are
beneficial, without increasing the model size. Machine
translation or transliteration models are inspired by deep
representation learning. Their memory requirements are
very less as compared to statistical models. Neural Networks
are trained after for certain domains or applications. After
training, the network practices. With time it starts operating
according to its own judgment, turning into an "expert".

2. LITERATURE SURVEY

Arbabi et al. developed an Arabic-English transliteration
system [1] using knowledge-based systems and neural
networks. The first step in this system was to enter the
names into the database which was obtained from telephone
dictionary. As in Arabic script, short vowels are generally not
written, a knowledge-based system is used to vowelize these
names to add missing short vowels. The words which cannot
be properly vowelized by KBS are then eliminated using
artificial neural network. The network is trained using
cascade correlation method, a supervised, feed forward
neural processing algorithm. Thus the reliability of the
names in terms of Arabic syllabification is determined
through neural networks. The output of the network is in
binary terms. The artificial neural network is trained on
2800 Arabic words and tested on 1350 words. After this, the
vowelized names are converted into phonetic roman
representation using a parser and broken down into groups
of syllables. Finally the syllabified phonetics is used to
produce various spellings in English.

Kang et. al. presented an English-to-Korean automatic
transliteration and back transliteration system [2] based
on decision tree learning. The proposed methodology is fully
bidirectional. They have developed very efficient character
alignment algorithm that phonetically aligns the English
words and Korean transliteration pairs. The alignment
reduces the number of decision trees to be learned to 26 for
English-to-Korean transliteration and to 46 for Korean-to-
English back transliteration. After learning, the
transliteration and back transliteration using decision tree is
straightforward.

Wan and Verspoor have proposed an "Automatic English-
Chinese name Transliteration" [3] system. The system
transliterated on the basis of pronunciation. That is, the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4438

written English word was mapped to written Chinese
character via spoken form associated with the word. The
system worked by mapping an English word to a phonemic
representation and then mapping each phoneme to a
corresponding Chinese character. The transliteration
process consisted of five stages: Semantic Abstraction,
Syllabification, Sub-syllable divisions, Mapping to Pinyin and
Mapping to Han characters. Semantic abstraction was a
preprocessing step that performed dictionary lookups to
determine which parts of the word should be translated or
which should be transliterated. The phonetic representation
of each sub syllable was transformed to Pinyin, which is the
most common standard Mandarin Romanization system.

Harshit Surana and Anil Kumar Singh in 2008, proposed a
transliteration system on two Indian languages Hindi and
Telugu [4]. In their experiment, a word was first classified as
Indian or foreign using character based n - grams. The
probability about word's origin was computed based on
symmetric cross entropy. Based on this probability measure,
transliteration was performed using different techniques for
different classes (Indian or foreign). For transliteration of
foreign words, the system first used a lookup dictionary or
directly map from English phoneme to IL letters. For
transliteration of Indian word, the system first segmented
the word based on possible vowels and consonant
combinations and then mapped these segments to their
nearest letter combinations using some rules. The above
steps generate transliteration candidates which were then
filtered and ranked using fuzzy string matching in which the
transliteration candidates were matched with the words in
the target language corpus to generate target word. The out
of vocabulary words are not handled by this system.

Deep and Goyal have developed a Rule based Punjabi to
English transliteration system for common names [5]. The
proposed system works by employing a set of character
sequence mapping rules between the languages involved. To
improve accuracy, the rules are developed with specific
constraints. This system was trained using 1013 preson's
names and tested using different person names, city names,
river names etc. The system has reported the overall
accuracy of 93.22%.

P.J. et. all. proposed English to Kannada transliteration
system [6] using Support Vector Machine. The proposed
system uses sequence labeling approach for transliteration
which is a two step approach. The first step performs
segmentation of source string into transliteration units and
the second step performs comparisons of source and target
transliteration units. It also resolves different combination of
alignments and unit mappings. The whole process is divided
into three phases: preprocessing, training using SVM and
transliteration. The preprocessing phase converts the
training file into a format required by SVM. The authors are
using database of 40,000 Indian place names for the training
of SVM. In this phase, During training phase, aligned source
language names are used as input and target language names
are used as label sequence and given to SVM. The training

phase generates a transliteration model which produces top
N probable Kannada transliteration during transliteration
phase. The system is tested on 1000 out of corpus place
names. The system is also compared with Google Indic
system and reported higher accuracy while transliterating
Indian names and places. The overall accuracy of the system
is 87.28%.

Dhore et al. proposed Hindi to English transliteration of
Named entities using Conditional random Fields [7].
Indian places names are taken as input in Hindi language
using Devanagari script by the system and transliterated into
English. The input is provided in the form of syllabification in
order to apply the n-gram techniques. This syllabification
retains the phonemic features of the source language Hindi
into transliterated form of English. The aim is to generate
transliteration of a named entity given in Hindi into English
using CRF as a statistical probability tool and n-gram as a
feature set. The proposed system was tested using bilingual
corpus of 7251 named entities created from web resources
and books. The commonly used performance evaluation
parameter was "word accuracy?. The system has received
very good accuracy of 85.79% for the bi-grams of source
language Hindi.

Sanjanashree and Anand Kumar presented a framework
for bilingual machine transliteration for English and
Tamil based on deep learning [8]. The system uses Deep
belief Network (DBN) which is a generative graphical model.
The transliteration process consists of three steps viz.
Preprocessing, Training using DBN and testing. The
preprocessing phase does the Romanization of Tamil words.
The data in both languages is converted to sparse binary
matrices. Character padding is done at the end of every word
to maintain the length of the words constant while encoding
as sparse binary matrices. Deep Belief Network is a
generative graphical model made up of multiple layers of
Restricted Boltzmann Machine, a kind of Random Markov
Field and Boltzmann Machine.

Mathur and Saxena have developed a system for English-
Hindi named entity transliteration [9] using hybrid
approach. The system first processes English words to
extract phonemes using rules. After that statistical approach
converts the English phoneme to equivalent Hindi phoneme.
The authors have used Stanford's NER for name entity
extraction and extracted 42,371 name entities. Rules were
applied to these entities and phonemes were extracted.
These English phonemes were transliterated to Hindi and a
knowledgebase of English-Hindi phonemes was created.

Lehal and Saini have developed "Sangam: A Perso-Arabic
to Indic Script Machine Transliteration Model" [10].
Sangam is a hybrid system which combines rules as well as
word and character level language models to transliterate
the words. The system has been successfully tested on
Punjabi, Urdu and Sindhi languages and can be easily
extended for other languages like Kashmiri and Konkani. The
transliteration accuracy for the three scripts ranges from

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4439

91.68% to 97.75%, which is the best accuracy reported so
far in literature for script pairs in Perso-Arabic and Indic
script.

3. PROPOSED SYSTEM

Language Modeling is the task of predicting what word/letter
comes next. Unlike the FNN and CNN, in sequence modeling,
the current output is dependent on the previous input and
the length of the input is not fixed. Given a ‘t-1’ words, we are
interested in predicting the iᵗʰ word based on the previous
words or information. This is how we solve the language
modeling using Recurrent Neural Networks.

The input to the function is denoted in orange color and
represented as an xₜ. The weights associated with the input
is denoted using a vector U and the hidden representation
(sₜ) of the word is computed as a function of the output of
the previous time step and current input along with bias. The
output of the hidden represented (sₜ) is given by the
following equation,

we compute the hidden representation of the input, the final
output (yₜ) from the network is a softmax function
(represented as O) of hidden representation and weights
associated with it along with the bias.

ENCODER-DECODER MODEL:

Encoder Model

The RNN the output of the first time step is fed as input along
with the original input to the next time step. At each time
step, the hidden representation (sₜ₋₁) of the word is
computed as a function of the output of the previous time
step and current input along with bias. The final hidden state
vector(sₜ) contains all the encoded information from the
previous hidden representations and previous inputs. Here,
Recurrent Neural Network is acting as an Encoder.

Decoder Model

Once we pass the encoded vector to the output layer, which
decodes into the probability distribution of the next possible
word. The output layer is a softmax function and it takes
hidden state representation and weights associated with it
along with the bias as the inputs. Since the output layer
contains the linear transformation and bias operation, it can
be referred to as the simple feed-forward neural network.
Feed-Forward Neural Network is acting as a Decoder.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4440

ATTENTION MODEL SOLUTION:

The problem in this approach is that encoder reads the entire
sentence only once and it has to remember everything and
converts that sentence to an encoded vector. For longer
sentences, the encoder will not be able to remember the
starting parts of the sequence resulting in the loss of
information.

We, humans, try to translate each word in the output by
focusing only on certain words in the input. At each time-step,
we take only relevant information from the long sentences
and then translate that particular word. Ideally, at each
time-step, we should feed only the relevant information
(encodings of the relevant information) to the decoder for
the translation.

What else we need?

So for each input word, we assign a weight α (ranges between
0–1) that represents the importance of that word for the
output at the time-step ‘t’. For example, α12 represents the
importance of the first input word on the output word at the
second time-step. To generalize, the representation αjt
represents the weight associated with the jᵗʰ input word at
the tᵗʰ time-step. For example, at time-step 2, we could just
take a weighted average of the corresponding word
representations along with the weights αjt and feed it into the
decoder. In this scenario, we are not feeding the complete
encoded vector into the decoder, rather the weighted
representation of the words.

Encoder

The encoder operation doesn’t change much when we
compare it to the vanilla version of encoder-decoder
architecture without attention. At each time step, the
representation of each word is computed as a function of the
output of the previous time step and current input along with
bias. The final hidden state vector(sₜ) contains all the
encoded information from the previous hidden
representations and previous inputs. RNN is used as an
encoder.

Decoder

In the vanilla version of the encoder-decoder model, we
would pass the entire encoded vector to the output layer,
which decodes into the probability distribution of the next
possible word. Instead of passing the entire encoded vector,
we need to find the attention weights using the fancy
equation that we discuss in the last section to find ejt. Then
normalize the ejt weights using softmax function to get αjt.
Once we have all the inputs to feed into the decoder and
weights associated with them (Thanks to the fancy

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4441

equation!), we will compute the weighted combination of all
the inputs and weights to get the resultant vector Ct. We will
feed the weighted combination vector Ct to the Decoder RNN,
which decodes into the probability distribution of the next
possible word. This operation of decoding goes for all the
time-steps present in the input. The output layer is a softmax
function and it takes hidden state representation and weights
associated with it along with the bias as the inputs.

4. IMPLEMENTATION AND RESULTS

Loss without Attention:

Loss with Attention:

5. CONCLUSIONS

In this paper work, we have presented a survey on
challenges, different approaches and evaluation metrics
used for different machine transliteration systems. We have
also listed some of the existing transliteration systems.
From the survey we have found that almost all existing
language machine transliteration systems are based on
statistical and hybrid approach. We Implemented Bilingual
transliteration model for languages (English and Hindi);
Accuracy of the simple encoder-decoder model was close to
72% while Accuracy of the Attention encoder-decoder
model was approximately 80%.

Given that transliteration is often used as part of machine
translation systems, and that such systems themselves are
increasingly character based end-to-end system, the
question arises whether we need separate transliteration
models at all. It appears likely that transliteration will
remain a distinct submodule of such systems, since internal
graphemic and phonetic representations inside
transliteration modules are likely quite different from
internal semantic representations required for translation.
Experimental evidence from humans also supports the
notion of separate and distinct processing of proper nouns
and other nouns.

REFERENCES

[1] M. Arbabi, S. M. Fischthal, V. C. Cheng, and E. Bart,
"Algorithms for Arabic name transliteration," IBM
Journal of research and Development, vol. 38, pp. 183-
194, 1994.

[2] B.-J. Kang and K.-S. Choi, "Automatic Transliteration and
Back-transliteration by Decision Tree Learning," in
LREC, 2000.

[3] S. Wan and C. M. Verspoor, "Automatic English-Chinese
name transliteration for development of multilingual
resources," in Proceedings of the 17th international
conference on Computational linguistics-Volume 2,
1998, pp. 1352-1356

[4] H. Surana and A. K. Singh, "A More Discerning and
Adaptable Multilingual Transliteration Mechanism for
Indian Languages," in IJCNLP, 2008, pp. 64-71.

[5] K. Deep and V. Goyal, "Development of a Punjabi to
English transliteration system," International Journal of
Computer Science and Communication, vol. 2, pp. 521-
526, 2011.

[6] P. Antony, V. Ajith, and K. Soman, "Kernel method for
english to kannada transliteration," in Recent Trends in
Information, Telecommunication and Computing (ITC),
2010 International Conference on, 2010, pp. 336-338.

[7] M. L. Dhore, S. K. Dixit, and T. D. Sonwalkar, "Hindi to
english machine transliteration of named entities using
conditional random fields," International Journal of
Computer Applications, vol. 48, pp. 31-37, 2012.

[8] P. Sanjanaashree, "Joint layer based deep learning
framework for bilingual machine transliteration," in
Advances in Computing, Communications and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4442

Informatics (ICACCI, 2014 International Conference on,
2014, pp. 1737-1743.

[9] S. Mathur and V. P. Saxena, "Hybrid appraoch to
EnglishHindi name entity transliteration," in Electrical,
Electronics and Computer Science (SCEECS), 2014 IEEE
Students' Conference on, 2014, pp. 1-5.

[10] G. S. Lehal and T. S. Saini, "Development of a Complete
Urdu-Hindi Transliteration System," in COLING
(Posters), 2012, pp. 643-652.

[11] S. Karimi, F. Scholer, and A. Turpin, "Machine
transliteration survey," ACM Computing Surveys (CSUR),
vol. 43, p. 17, 2011.

[12] K. Kaur and P. Singh, "Review of Machine Transliteration
Techniques," International Journal of Computer
Applications, vol. 107, 2014.

[13] B.-J. Kang and K.-S. Choi, "Automatic Transliteration and
Back-transliteration by Decision Tree Learning," in
LREC, 2000.

[14] J.-H. Oh and K.-S. Choi, "An English-Korean
transliteration model using pronunciation and
contextual rules," in Proceedings of the 19th
international conference on Computational linguistics-
Volume 1, 2002, pp. 1-7.

[15] M. G. Malik, "Punjabi machine transliteration," in
Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics, 2006,
pp. 1137-1144

[16] C.-J. Lee and J. S. Chang, "Acquisition of English-Chinese
transliterated word pairs from parallel-aligned texts
using a statistical machine transliteration model," in
Proceedings of the HLT-NAACL 2003 Workshop on
Building and using parallel texts: data driven machine
translation and beyond-Volume 3, 2003, pp. 96-103.

[17] H. Surana and A. K. Singh, "A More Discerning and
Adaptable Multilingual Transliteration Mechanism for
Indian Languages," in IJCNLP, 2008, pp. 64-71.

[18] G. Hong, M.-J. Kim, D.-G. Lee, and H.-C. Rim, "A hybrid
approach to english-korean name transliteration," in
Proceedings of the 2009 Named Entities Workshop:
Shared Task on Transliteration, 2009, pp. 108-111.

[19] R. C. Balabantaray and D. Sahoo, "Odia transliteration
engine using moses," in Business and Information
Management (ICBIM), 2014 2nd International
Conference on, 2014, pp. 27-29.

[20] M. A. Zahid, N. I. Rao, and A. M. Siddiqui, "English to Urdu
transliteration: An application of Soundex algorithm," in
Information and Emerging Technologies (ICIET), 2010
International Conference on, 2010, pp. 1-5

[21] C. Sunitha and A. Jaya, "A phoneme based model for
english to malayalam transliteration," in International
Confernce on Innovation Information in Computing
Technologies, 2015, pp. 1-4.

[22] M. A. Malik, C. Boitet, L. Besacier, and P. Bhattcharyya,
"Urdu Hindi machine transliteration using SMT,"
WSSANLP-2013, p. 43, 2013.

[23] P. Rathod, M. Dhore, and R. Dhore, "Hindi and Marathi to
English machine transliteration using SVM,"

International Journal on Natural Language Computing,
vol. 2, pp. 55- 71, 2013.

[24] A. A. Kak, N. Mehdi, and A. A. Lawaye, "Building a Cross
Script Kashmiri Converter: Issues and Solutions,"
Proceedings of Oriental COCOSDA (The International
Committee for the Co-ordination and Standardization of
Speech Databases and Assessment Techniques), 2010.

[25] J. Kaur and G. S. Josan, "Statistical Approach to
Transliteration from English to Punjabi," International
Journal on Computer Science and Engineering, vol. 3, pp.
1518-1527, 2011.

[26] Waleed Ammar, Chris Dyer, and Noah A Smith. 2012.
Transliteration by sequence labeling with lattice
encodings and reranking. In Proceedings of the 4th
Named Entity Workshop, pages 66– 70. Association for
Computational Linguistics.

[27] Mayce Al Azawi, Muhammad Zeshan Afzal, and Thomas
M Breuel. 2013. Normalizing historical orthography for
ocr historical documents using lstm. In Proceedings of
the 2nd International Workshop on Historical Document
Imaging and Processing, pages 80–85. ACM.

[28] Kanishka Rao, Fuchun Peng, Hasim Sak, and Franc¸oise
Beaufays. 2015. Grapheme-tophoneme conversion using
long short-term memory recurrent neural networks. In
Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pages 4225–4229.
IEEE.

[29] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112.

[30] Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-to-
sequence neural net models for grapheme-to-phoneme
conversion. arXiv preprint arXiv:1506.0019.

