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Abstract - Description of the noise scattering in Magnetic 
Resonance Images (MRI) will have numerous advantages, 
which includes standard assurance and protocol 
development. Noise description is a main key when similar 
imaging acceleration is present with multiple coil 
acquisitions, in which the noise dispersion can 
accommodate serious spatial heterogeneities. When parallel 
imaging regeneration is a direct procedure then, accurate 
noise study can be implemented by taking the correlations 
into considerations between all the samples that are 
involved. GRAPPA is a k–space based technique, in which the 
accurate examination has been considered statistically 
repressive since a large amount of noise covariance 
matrices are present. This is needed to descript the noise 
generation from k–space to frequency space (image–space). 
To keep away statistical load, GRAPPA reconstruction is 
formulated as a pixel wise linear process which was 
executed in the frequency space earlier. This methodology 
helps to evolve accurate description of bluster dispersal for 
self-calibrated similar with arbitrary Cartesian sampled 
pattern. By utilizing the symmetry and reparability 
generating noise operation, this methodology is statistically 
structured wherein any large matrices are useless. By 
estimating a fixed reconstruction kernel, error-free dispersal 
of the noise conflict for each coil’s image can be achieved. 
Each coil noise maps are later merged accordingly to the 
coil merging proposal as in image regeneration, and can be 
appealed with complex coil merging and also with root sum-
of-squares (SOS) approaches.  
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1. INTRODUCTION  

Noise is basically a non-preventable origin of 
unwanted loss in MRI signals. The main origin of noise is 
the source, which is includes electrical bluster occurred 
throughout the addition of the sign in the output series. 
Noise destroys the optical standard from reformed images 
that is degraded which gets more complicated during 
post–processing techniques that is during segmenting, 
registering, fMRI inspection or approximation of 
framework numerically. Exact description variations in 
noise are necessary for quality assurance protocol 
optimization and also to customize post processing steps 
later. Practically, k–space noise is generally supposed as 
zero mean, dimensionally uncorrelated and IID complex 
Gaussian procedure for all coils, by providing uniform 

variation for imaginary and real portion. Suppose the 
information is provided by numerous output coils, 
multiple noise from coil can be represented from 
covariance matrix itself. The noise propagation in k–space 
into the image space can be expressed by matrix working 
in linear image regeneration. For completely sampling 
addition, the noise of IID bearing is conserved while 
transforming the information into the image space, which 
depends on the orthogonally of the Inverse Fast Fourier 
Transform (IFFT).  

A g-factor otherwise called as general intelligence 
is the common mental capacity or general intellect factor. 
It is fluctuating that summarizes positive correlations 
among different rational task tends to be comparable. 
GRAPPA is a parallel imaging method to increase speed of 
MRI pulse series. The Fourier plane of the image is 
regenerated from the frequency signals of every coil. It is a 
method that regenerates the information in frequency 
domain. The GRAPPA directly distributes the g-factor 
GRAPPA. 2D or 3D Fourier transform of the MRI image 
that is measured is known as K-space. Its composite 
measurements are sampled during an MR measurement in 
a planned scheme managed by a pulse series that is an 
exactly timed series of radiofrequency and gradient 
pulses. Noise maps are the graphical depiction of the 
sound level dispersion and the generation of sound waves 
in a specified part for an assigned period. The main cause 
of noise in images are sensor illumination levels. 

Avoiding the necessity of large covariance matrices: 
Complication of large covariance matrices is shortened by 
considering the k–space image reformation procedure for 
every multiplication of pixel, like in x–space. Reformation 
in these methods give rise to statistical coherent noise 
description by preventing the large k–space correlations. 
Reformation from non-uniform k–space under-sampling 
will only be equalized for all location convolution, which 
involves misconception in the boundary in the middle of 
dissimilar locations. 

1.1 Objectives of the Project 
 

I. This paper purposes better than image–space and 
also methodical k–space noise generation analysis 
is been submitted. By considering entire 
correlations present in k–space, propagation of 
noise can be reconstructed.  
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II. Huge covariance matrices are taken away by 
utilizing large symmetries and separability in 
every the reformation step. This provides an 
accurate and arithmetically effective response to 
the noise dispersal in GRAPPA for each 
reformation channel and also describing noise in 
the last coil-merged image.  

III. To provide accuracy under the supposition of 
stationary and un-correlation in the original 
under-sampled k-space acquisition.  

IV. By complex or magnitude built coil merging 
methods, every coil images can be merged into 
magnitude complex image.  

V. Every coil noise approximation are merged as 
stated to the chosen coil merging method, 
therefore specifying noise in the last merging 
images of coils. It will also assess the noise 
amplification (g-factor) in GRAPPA reformation. 

1.2 Noise Characterization in GRAPPA 

GRAPPA weights are non-stochastic as per the 
analysis because they are independent of the noise 
attainment. Which is absolutely correct only if they are 
approximated from a self-reliant acquisition. This 
estimation is expected to be a proper assumption also in 
self-calibrated additions only when classical 
determination of GRAPPA weight expected obtained 
regions in the k–space are identically distributed (IID). In 
spite of distinguishing the noise data in the finishing 
combined image, every steps of the GRAPPA processing 
will be correctly specified as mentioned in Figure 1.1. It 
shows a figured structure of the noise propagation 
throughout the whole GRAPPA regeneration algorithm. 
Through different channels the image is obtained and the 
representative k–space for every channel noise can be 
considered stationary, while correlations in the middle of 
channels exist. GRAPPA later regenerates the k–space for 
every channel by inserting the lost k–space locations.  

Noise models inside the GRAPPA reformed pipeline with 
main noise parameters includes following steps 

I. k–space Interpolation 

II. Column iFFT 

III. Row iFFT 

IV. Coil combination 

 

Fig 1.1: Noise models inside the GRAPPA 

2. GRAPPA AND K-SPACE 

2.1 GRAPPA 

GRAPPA is the normalised execution of the VD-AUTO-
SMASH. Unmerged images are formed for every coil 
present in the array to produce the lost lines for every coil 
in GRAPPA by applying multiple block wise 
reconstructions. This process as shown in Fig. 2.1 

 

Fig. 2.1: The basic GRAPPA algorithm. 

Black circles represent information gained in every 
coil array that are relevant to ACS lines represented by 
gray circles. Information from numerous line of entire 
coils are utilized to suit an ACS line in one coil, in such 
method an ACS lines from 4th coil. To generate the missing 
lines from that coil this fit provides the weights. FT is 
utilized to produce the non-merged images of particular 
coil when entire lines are regenerated for a specified coil. 
A complete group of unmerged images can be gained when 
this procedure is replicated for every coil of the array that 
are merged with the help of a normal sum of squares 
(SOS) technique.  

dsadas

da 

5

0 

25

0 20

0 15

0 10

0 
0 

5

0 

25

0 20

0 15

0 10

0 
0 

5

0 

25

0 20

0 15

0 10

0 
0 

5

0 

25

0 20

0 15

0 10

0 
0 

5

0 

25

0 20

0 15

0 10

0  
0 

5

0 

25

0 20

0 15

0 10

0  
0 

5

0 

25

0 20

0 15

0 10

0  
0 

25

0 20

0 15

0 10

0  
0 
5

0 

1

  0
  

4

  3
  2
  

1 
0

  

4

  3
  2 

1

  0
  

4 
3

  2 

1

  0
  

4

  3
  2
  

1

  0
  

4

  3
  2
  



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 08 | Aug 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4590 
 

 

Fig 2.2: An overview of GRAPPA reconstruction algorithm 
in under-sampled k-space matrices 

Firstly, under-sampled k-space matrices are turned into 
reconstructed k-space matrices by GRAPPA reconstruction 
algorithm along with the computation of ACS lines. These 
weights are then applied in the reconstruction step, which 
completes the missing lines in each coil matrix through 2D 
iFFT. Next, the individual coil images are generated and 
finally merged in image combination using sum of squares 
(SOS). Fig 2.2 shows the overview of GRAPPA reformation 
algorithm. The noise dispersal of the last composite image 
is based on the coil merging process that is used, here SOS 
procedure is used. GRAPPA weights are not irregular that 
is they are not dependent on the noise comprehension, 
this can be correct only when they are approximated from 
a individualistic acquisition. This estimation will be 
satisfying estimation in self-calibrated acquisitions also 
where in the obtained regions in the k-space are IID. 

2.2 K-space 

Assembling numbers corresponding to brightness 
represented by gray scale can be visualized on the display 
arranged typically in a square array or matrix form. To 
acquire a particular region of information rendering some 
property of anatomy or purpose a possible approach is 
required in imaging and also to utilize that information 
value to occupy the intensity on the image matrix. The X-
ray film causes only half of the image regions to be gained 
which is the main problem, from the corresponding part of 
a control image obtained partial image would be proper 
and identical. 

Mathematically, it is said that every single data 
regions and spatial regions contains each correspondence 
in middle of them. In MRI, the number of data regions is 
equal image regions represented as picture components 
and pixels since there is no correspondence to each pixel. 
Correspondingly, the whole image is determined by every 
data region that is obtained in some way but without all of 
the information or data the image cannot be fully 
reconstructed.  

The neural networks are executed in the image 
field, by assembling multiple coil k-space information a 
proper neural network should be constructed in the k-
space domain including the channel magnitude of the 
neural mesh. Deep neural network is instructed to know 
the relationship between the multiple coil k-space channel 
information and each channel reconstructed coil images as 
shown in Fig. 2.3.  

 

Fig. 2.3: The architecture of k-space 

3. IMPLEMENTATION USING DATASETS 

3.1 DATASETS 

Three data sets are to be considered for the experiments 
namely, 

I. Simulated Brain Dataset 

II. Water Phantom Acquisition 

III. In Vivo Acquisition 

3.1.1 Simulated Brain Dataset: 

SBD consists of group of practical MRI information 
volumes gained by an MRI simulator. These information 
are utilized by neuroimaging community to examine the 
production of other image analysis method in a situation 
in which the correctness can be known. Basically SBD will 
have information depending on two structural models, 
they are healthy general and Multiple Sclerosis (MS). For 
both models complete 3D information volume are 
restored utilizing three MRI series they are T1-, T2- and 
PD weighted.  

From the above mentioned database a testimonial 
axial brain MR image is gained. For this proposed method 
T1-weighted image set to INU as 0%, with intensity non-
uniform, slice thickness is set to 1mm and range of 
intensity generalized to [0,255]. By regulating the images 
utilizing artificial sensitive maps coding for every coil an 8 
coil accession is restored. Coil images that are noise-free 
will be transformed into the k–space. Such transformed 
noise-free images are altered with synthetic Gaussian 
noise described from matrices Γk and Ck with SNR ranging 
to 30 for every coil. The correlation co-efficient in the 
middle of coils represented by ρ is set to 0.1. 4000 
realizations of each image is used for statistical purpose. 
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3.1.2 Water Phantom Acquisition: 

Water phantoms are the primary tool used for 
absolute dosimeter. Water phantoms are the model of a 
tissue which are economical, flexible and manageable tool 
to evolve imaging techniques. Water phantom are formed 
by water in volume ratio comparable to the tissue of 
clinical interest. 100 different realizations of completely 
encoding part of a water phantom is sedated using 4g/L of 
Sodium Chloride (NaCl) also 3.3685 g/L of Nickel Chloride 
Hydrate. On a 3.0T, two scanned 8-channel head coil 
scanner is present. TE/TR is 2.0/11.8ms, flip angle is 3◦, 
view field is 220X220mm2, matrix size is 128X128, slice 
thickness is 3mm, bandwidth is ±62.5KHz and complete 
scanning time is 641.2 seconds. 200 realizations are 
acquired in order to ensure steady-state and the first 100 
realizations are discarded. Also B0 domain drift connected 
to phase difference that is corrected from pre-processing 
steps that approximated the phases shifting. 

3.1.3 In Vivo Acquisition 

In vivo acquisition are datasets of that effects the 
various biological entities including cells, tissues of 
animals, plants and humans. In vivo are properly matched 
for noticing all the result of an experiment carried on an 
object. Completely encoded 2D axial slice head testing is 
performed to demonstrate the feasibility of the suggested 
technique that is used. Informed consent is gained earlier 
to the acquisition which was obtained with Fast Spin Echo 
(FSE) series utilizing a 32 channel head coils on a 3.0T 
scanner. TE/TR is ranged as 30.8/2000ms, field of view is 
260X260mm2, matrix size is 256X256, slice thickness is 
3mm, bandwidth is ±22:5KHz and total scan time is 132 
seconds. 

3.2 EXPERIMENTS PERFORMED 

Using data sets, three main experiments are 
performed in this proposed method namely, 

I. Uniform Under-Sampling patterns. 
II. Non-uniform subsampling patterns with ACS 

lines. 
III. Non-uniform subsampling patterns with VD 

reconstruction. 
 

3.2.1 Uniform Under-sampling Patterns 

Under-sampling is a process in which a band-pass 
filtered signal is sampled at sampling rate which is less 
than Nyquist rate and reconstruction of the signal is 
possible. These are identical from the samples of a less 
frequency which is aliasing high frequency signal. With 
rectilinear sampling, uniform under-sampling will effect a 
simple aliasing pattern which allows resolving the 
reversed issues on a scale presented by the under 
sampling rate. Flatened sensing is necessary incoherence 

linking the sensing field and the object, in contrast to 
uniform under sampling. To increase encoding speed in 
MRI and also to imaging the dynamic objects uniform 
under sampling plays an important role.  

Fig 3.1 shows the uniform under-sampling patterns. 
The image to be measured is denoted by m, which is the 
2D-FT of the data denoted by d, in k-space. An under-
sampling pattern is represented by the mask denoted as 
M. du represents under-sampled zero filled data set in k-
space. The image reconstructed from the under-sampled 
data is denoted by mu which is created through the 2D 
fourier transform of du. The reconstruction works because 
the fourier transform of M gives a near delta function 
which means no additional features are added to mu 
through the convolution. FFT (M) denotes the associated 
periodicity in its fourier transform. Eq (1) and (2) which 
are linked together through 2D fourier transforms. 

du = M X d (1) 

mu = F (d) 

mu = F (M X d) 

mu = F (M) * m (2) 

 

Fig 3.1: Uniform Under-sampling Patterns 

As mentioned above uniform under-sampling patterns are 
known. When R = 2 and 32 ACS lines are present, the k–
space information with respect to initial realization in 
every information set are subsampled. The GRAPPA kernel 
and the merging vector are approximated by ACS lines 
from the initial realization. The k–space information are 
under-sampled uniformly for every realization excluding 
ACS lines. The expectations underlying image space 
dependent techniques are true, hence image space 
techniques are almost equal to the proposed k–space 
technique for initial case. Hence there is zero delusion in 
the assumption of the g-factor maps. Fig 3.2 shows the 
uniform under-sampling pattern for simulated brain 
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dataset comparing different methods like Monte Carlo, k-
space and Image-space. 

 

Fig 3.2: Uniform under-sampling pattern for simulated 
brain dataset 

3.2.2 Non-Uniform Sub-sampling Patterns With ACS 
Lines 

Sub-sampling reduces the image size by removing 
information all together. When subsampled, interpolation 
and also smoothing of image will also take place so that it 
will reduce aliasing. The chrominance values are filtered 
then subsampled by ½ or ¼ that of intensity. Sub-
sampling includes, variance approximation and estimation 
of underlying distribution. Non-uniform sub-sampling 
allows to alter the sub-sampling method for revised image 
quality for large acceleration factors. Non-uniform sub-
sampling includes fast regeneration methods like SENSE 
that helps in achieving regularized image than 
regeneration of the uniformly sub-sampled information 
requests. Non-uniform sub-sampling does automatic 
regularization and helps to get good image quality. Fig 3.3 
shows the non-uniform sub-sampling patterns.  

 

Fig 3.3: Non-Uniform sub-sampling Patterns 

Auto Calibration Signals (ACS) are the signals that are 
compared between a known or a standard measurement 
and the measurement using the system. The accuracy 
standard measurement will be ten times better than that 
of a measuring signal. In non-uniform subsampling 
patterns in which ACS lines are present. Therefore, the k–
space information for each realization and every 
individual information set are subsampled with an ACS 
location with 32 lines. Using three combinations of 
parameters the result of the kernel size and the 
acceleration size can be known. They are,  

{R = 4; kernel = [3; 4]},  

{R = 5; kernel = [3; 4]},  
{R = 6; kernel = [5; 4]}.  

For every experiment, the GRAPPA kernel and the coil 
merging vector are computed using those first realization 
of each data, later it is utilized to regenerate the last image. 
Fig 3.4 shows the non-uniform subsampling pattern for 
simulated brain dataset with 32 ACS lines. 

 

Fig 3.4: Non-uniform subsampling pattern with ACS lines 
for simulated brain dataset. 

3.2.3 Non-Uniformly Sub-sampled Patterns With VD 
Reconstruction 

Non-uniformly sub-sampled signals allows to alter the 
sub-sampling method for revised image quality for large 
acceleration factors. Non-uniform sub-sampling includes 
quick regeneration methods like SENSE and helps in 
achieving regularized image than reformation of the 
uniformly sub-sampled data request. Non-uniform sub-
sampling does automatic regularization and helps to get 
good image quality. 

Variable Density (VD) is a photographic soundtrack in 
which the signal is represented by a line of varying 
density. The proposed VD reconstruction helps in 
generating ensemble measurement which is 
computationally efficient and occupies less memory. 
Therefore VD reduces the necessary number of 
measurements for image reconstruction. VD can be 
applied to several transform domains which leads to 
simple implementations. Fig 3.5 shows the original image 
and VD reconstruction sampling image. 

 

Fig 3.5: Original image and reconstruction from VD 
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In non-uniform subsampling patterns which is occurred 
by VD regeneration. In this method the initial image in 
every information set are subsampled by varying 
accelerating factor present in many k–space parts that is 
R=3, 4 and 5. And also un-accelerated location at the k–
space center having 32 ACS lines. The ACS lines are 
utilized to acquire the many GRAPPA kernels, through all 
the coil images are regenerated and utilized to 
approximate the coil merging vector. For every realization, 
the k–space coil are non-uniformly subsampled and 
regenerated utilizing GRAPPA with earlier computed 
kernel. Finally merged with previous computed merging 
vector in linear form. Fig 3.6 shows the non-uniform 
subsampling pattern of VD reconstruction for simulated 
brain dataset with 32 ACS lines comparing different 
methods like Monte Carlo, k-space and Image-space. 

 

Fig 3.6: Non-uniform subsampling pattern with ACS 
lines for simulated brain dataset. 

4. RESULTS AND CONCLUSION 

4.1 RESULTS 

Usually image-space will produce two resources 
of delusion, firstly the reconstructed image in the 
frequency space is not precisely equal to the reconstructed 
image in the k–space. As soon as the kernel size is applied 
to a filtering location, the subsistence of the outcome 
overlays with other parallel locations, which leads to 
remaining delusions. As a result, two locations will be 
correlated hence, the image–space analysis is not 
completely accurate. Since both Monte-Carlo and image-
space methods are inaccurate k-space analysis is 
implemented in this proposed methodology. Here the 
inputs are k-space noise matrices Γ and C which are sub-
sampling images like GRAPPA kernel and coil merging 
vector. In both uniform sub-sampling methods, phase 
encoding dimension are almost equal hence there is no 
delusion in the approximation of g-factor. Therefore using 
k-space analysis, noise maps in GRAPPA are calculated 
which is computed in MATLAB through codes. 

4.1.1 Creation of Fourier Transform k-space 

By applying 2D Fourier transform from image to 
frequency space (k-space), under-sampled k-space is 

generated for all 6 channels where only one sampling is 
carried. Fig 4.1 shows frequency space transformed using 
Fourier Transform. The g-factor are determined for each 
and every channel in phantom image process that is still 
not reconstructed using GRAPPA. By varying accelerator 
factor and kernel size, 6 channel under-sampled k-space 
are obtained. Fourier transform can be applied in any 
number of dimensions which helps to obtain 2D frequency 
space and can be reconstructed using 2DFT. 

 

Fig 4.1: Fourier Transform k-space 

4.1.2 k-space using Auto-calibration lines 

Auto Calibration Signals (ACS) are compared with 
a standard measurement and the measurement using the 
system. The precision standard measurement are ten 
times better than that of a measuring signal. Here 16 ACS 
lines are used from the k-space image to estimate the 
misplaced lines in the image. Fig 4.2 shows auto-
calibration lines for all 6 channels. 

 

Fig 4.2: Auto-calibration lines in k-space 

4.1.3 GRAPPA reconstructed image 

All the channels are combined using the formula of 
sum of squares (SOS) which gives GRAPPA reconstructed 
image. The magnitude and phase of all the channels are 
combined using SOS method and then the final image is 
displayed. Fig 4.3 shows the image that is reconstructed 
using GRAPPA. Increasing kernel size will result in 
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improvised performance of the reconstructed image with 
respect to noise amplification. 

 

Fig 4.3: GRAPPA reconstructed image 

4.2 CONCLUSION 

Extra approximations are not required in the 
proposed methodology although accurate analytical 
derivation are attained. Since the factual assistance is 
provided by phantom experiment, other results can be 
compared with the proposed methodology. Error variation 
are taken place by varying kernel size, acceleration factor 
and numerous locations. A computational test that is 
performed for 256X256 image, image-space technique will 
require 4.66 seconds wherein k-space analysis technique 
will require 4.06 seconds. This can be achieved by 
accounting high degree parallelism in regeneration steps. 
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