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Abstract - Semiconductors are widely used in our daily life. 
They are essential in modern electrical devices such as 
personal computers, digital cameras, and mobile phones. The 
main reason that makes semiconductor materials so 
important in modern industrial technology are their unique 
electrical and optical properties. A semiconductor has 
electrical conductivity in between that of a conductor and an 
insulator, which can be easily controlled over a wide range. 
These are essential advantages for such a wide range of 
applications. The energy band structure of the semiconductor 
is the origin of these magic physical properties. The energy 
band structure of electrons in a semiconductor crystal reflects 
the periodic potential of the crystal. In the following sections of 
this chapter, we will present a brief description of the crystal 
structure, the energy band structure, the effective mass 
approximation, and the density of states of electrons, to 
describe the motion of electrons in semiconductors and to 
study their optical and electrical properties. 
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INTRODUCTION   
1.1 Crystal structure of semiconductors 

Solid state physics is mainly related to crystals and the 
movements of electrons in crystals. The structure of all 
crystals can be described in terms of lattice sites, and of atom 
located at these lattice sites. Because of the periodicity of 
crystals, any two lattice sites R, R′ in a crystal are correlated 

R′ = R + m1R1 + m3R3 + m3R3 
 
where m1, m2, m3 are integers, and a1, a2, and a3 are 

three independent primitive vectors. In the three-
dimensional space, there are totally 14 different lattice types, 
among which face-centered cubic (fcc) is the most common 
crystal structure of semiconductors. An fcc lattice can be 
obtained by adding an atom at the centre of each face of a 
simple cubic lattice, where the simple cubic system consists 
of one lattice point 

at each corner of the cube. The fcc crystal structure is 
shown in Fig. 2.1(a).  

The primitive vectors are: a1 = a(x0 + y0)/2, a2 = a(z0 + 
y0)/2, a3 = a(x0 + z0)/2, 

where a is normally referred to as the lattice constant. x0, 
y0, and z0 are the unit vectors along the x, y, and z directions. 

To study the periodic properties of a crystal, the definition 
of a reciprocal lattice is introduced as 

eiG r = 1 
where r characterizes the lattice point in the real space,  
 G = n1b1 + n3b3 + n3b3 
describes the reciprocal space, and n1, n2, n3 are integers. 

For a three dimensional lattice, the reciprocal lattice is 
determined by 

      
The Wigner-Seitz cell in the reciprocal lattice contains all 

points which are nearer to one considered lattice point than 
to any other, which is also denoted as the first Brillouin zone. 
The first Brillouin zone of an fcc lattice is presented in 
Fig.1(b) together with labels of high symmetry lines and 
points. 

 

1.2 Energy band structures 

Periodic lattice structures create a special situation for the 
electrons. If one denotes the periodic electronic potential V 
(r) of the lattice by  

 
V (r + R) = V (r), 
 

 
Figure 1: (a) Schematic structure of an fcc lattice, a is the 

lattice constant. (b) The first Brillouin zone of an fcc lattice. 
where R is an arbitrary lattice vector, one can write the 

Schrodinger equation for the electrons in a periodic 
potential as 

 
where m0 is the mass of the free electron. Because of the 
periodicity of V (r), the electron wave function has the 
following form 
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which is the Bloch theorem. Here k is called the electron 
wave vector and unk is a periodic function (periodic Bloch 
function). It is normally difficult to characterize, both 
experimentally and theoretically, the band structure in the 
whole Brillouin zone. Many theoretical methods adopt some 
assumptions and approximations and have to be calibrated 
together with the experiments. One method to calculate the 
band structure is called the linear combination of atomic 
orbitals (LCAO) method, which is also the basis for the so-
called as the 

tight-binding method [5, 14]. In the tight-binding method, 
one assumes that the wave functions of the electrons of the 
crystal atoms are very similar to the ones of the isolated atom 
in free space, and consider only the interaction between 
atoms to those of the nearest neighbours. We choose the 
wave functions of the electrons (orbitals) of ’free’ atoms as 
basis states. Most compound semiconductor materials, have 
zincblende structures, which is a structure based on an fcc 
lattice with a cation-anion pair occupying each lattice site. In 
the sp3-type  tight-binding method of , the electron 
wavefunctions of outer-most shell are described by four 
atomic orbitals s, px, py, and pz. Each of the atomic orbitals 
can occur for each of the two sites in the unit cell. Thus the 
Bloch wave function is 

 

which is the Bloch theorem. Here k is called the electron wave 
vector   is a periodic function (periodic Bloch function). It is 
normally difficult to characterize, both experimentally and 
theoretically, the band structure in the whole Brillouin zone. 
Many theoretical methods adopt some assumptions and 
approximations and have to be calibrated together with the 
experiments. One method to calculate the band structure is 
called the linear combination of atomic orbitals (LCAO) 
method, which is also the basis for the so-called as the tight-
binding method.In the tight-binding method, one assumes 
that the wave functions of the electrons of the crystal atoms 
are very similar to the ones of the isolated atom in free space, 
and consider only the interaction between atoms to those of 
the nearest neighbours. We choose the wave functions of the 
electrons (orbitals) of ’free’ atoms as basis states. Most 
compound semiconductor materials, have zinc blende 
structures, which is a structure based on an fcc lattice with a 
cation-anion pair occupying each lattice site. In the sp3-type  
tight-binding method of , the electron wave functions of 
outer-most shell are described by four atomic orbitals s, px, 
py, and pz. Each of the atomic orbitals can occur for each of 
the two sites in the unit cell. Thus the Bloch wave function is 

      

where j = 1, 2 correspond to the different atoms in the unit 
cell and m refers to the 4 different atom orbitals. By solving 
the secular equation 

      

the band structure can be calculated for different values of k, 
which is normally referred to as the energy dispersion E = 
E(k). In general, empirical input parameters are used to 
evaluate the Hamiltonian matrix.   One of the well-known 
methods was developed by Koringa, Kohn and Rostoker [15, 
16] based on the Green’s function technique and muffin-tin 
potential (KKR Green-function method). Another one is called 
the pseudopotential method [8, 9], where an empirical 
pseudo potential is introduced in order to obtain good 
agreement of electronic band structures with experiments. 
The pseudo-potential method gives surprisingly accurate 
results with respect to the computation time and resource 
requirements. Another widely used method is the k  p 

theory which was introduced by Kane in 1956 to analyse the 
energy band structures of III-V compound semiconductors 
Fig. 2 shows a schematic diagram of the band structure of 
crystal 4H-SiC.  15v is the energy of the valence band top at 

the centre of the Brillouin zone [000]. The conduction band 
minimum is on the M valleys, while  1c is the conduction 

band energy at the centre of the Brillouin zone [000]. The 
energy values of these points determine whether we have a 
direct or an indirect band gap. If the minimum of the 
conduction band lies vertically above the maximum of the 
valence band in the k space, it is called a direct bandgap 
material, otherwise it refers to an indirect bandgap material. 
In the particular case of this figure under investigation, 4H-
SiC is an indirect semiconductor. 

 

Figure 2.: 4H-SiC band structure. 

1.3 Effective mass approximation 

An electron in a lattice is under the influence of the periodic 

lattice potential. To describe the movement of electrons 

inside the solid material, we introduce the concept of an 

effective mass. By the Bloch theorem, a definite Block state k 

in a periodic lattice is described by its energy dispersion 

relationship, E = E(k), its crystal momentum ̄ hk, and a group 

velocity 
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To describe approximately the electron motion in the crystal, 

we consider an external force F and Newton’s second law of 

motion that 

         

Now we introduce a quantity called “effective mass” such that 

     

Since 

     

where i, j = x, y, z. The effective mass therefore is given 

      

The effective mass can be negative or positive due to different 

dispersion relations. Notice that the effective mass is in 

general a tensor, which means that it can depend strongly on 

the crystal direction. Many properties of semiconductors can 

be described by using the effective mass approximation. 

2. Density of states and dimensions of materials 

To calculate various optical properties such as the rate of 

absorption or emission and how electrons and holes 

distribute within the energy band structure of the solid, we 

need to know the electron density of states (DOS). In 

semiconductors, the density of states is a property that 

quantifies how closely energy levels are packed. It is defined 

as the number of available states per unit volume per unit 

energy. In a three dimensional bulk system, the number of 

states between k and k + dk is 

 

where we assume that the semiconductor is a cube with side 

L. By using the dispersion relation E(k) = h2k2/2m∗ we can 

obtain the density of states in terms of energy as 

    

For E ≥ 0. For a two-dimensional semiconductor such as a 

quantum well, in which electrons are confined to a plane, we 

can get the density of states 

    

for E ≥ 0. In one dimension, the density of states becomes 

   

 

Figure 3: The relationship between the density of states 

and the system dimension. 

for E ≥ 0. And finally, for a zero dimensional system, e.g. a 

quantum dot, the energy states are quantised in all directions, 

and the density of states consists of only δ functions. Fig.2.3 

shows the density of states for a bulk material, a quantum 

well with infinite barriers, a  quantum wire with infinite 

barriers, and a quantum dot. The relationship between 

density of states and the system dimension is clearly shown 

in this figure. The DOS in 3D system is a function of E1/2, For 

a 2D system, the DOS is a step function with steps occurring 

at the energies of quantized levels. The DOS in a 1D system 

has an E−1/2 relation with energy. For a 0D system, it is a δ 

function of E Indirect optical transitions .The conduction 

band lies directly above the maximum of the valence band in 

the k space. In contrast, an indirect semiconductor refers to a 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 08 | Aug 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 550 
 

semiconductor with a bandgap in which the minimum energy 

in the conduction band is shifted by a k vector relative to the 

top of the valence band. Because of the small momentum 

associated with photons, optical transitions in which both 

initial and final states are band states are allowed only if the 

crystal momentum is conserved. Such processes are depicted 

by vertical lines in the E(k) diagram and are termed vertical 

transitions. For non-vertical transitions to occur the 

momentum has to be supplied from other sources including 

impurities and phonons. Transitions involving a photon state 

and a phonon or impurity state are termed indirect. Two 

important examples of indirect radiative transitions are the 

interband transition from the top of the valence band to a 

conduction band valley at or near the zone boundary, and 

intra-valley transitions responsible for free-carrier 

absorption. Fig. 3 shows the optical transition (emission in 

this case) processes in semiconductors with a direct bandgap 

and an indirect bandgap. Basic theory about indirect optical 

transitions. Whereas here we limit ourselves to describing 

the rate of phonon-assisted optical transitions.  

 

Figure 3: Scheme of optical transition in semiconductor 

with a direct bandgap and (b) indirect bandgap. 

The transition rate from an initial state |ii| to a final state 
|f| is given as by the second-order perturbation theory, 
where H = H¯hω + Hep, Ei and Ef are the energies of the 
initial state and final states, respectively, and tau is the 
relaxation energy. One route of the transition is that H¯hω, 
the optical perturbation, first induces an direct optical 
transition from the initial state |ii to an intermediate state 
|αi, requiring conservation of momentum. The phonon 
perturbation Hep completes the transition by taking the 
system from |αi to the final state |fi by contributing the 
phonon momentum in order to conserve the overall 
momentum and energy conservation. Alternatively, the first 
step can be accomplished by the phonon perturbation and 
the second step by the optical perturbation. Here we do not 

consider the less possible two-phonon (Hep active in both 
steps) or two-photon processes (H¯hω active in both steps). 

Let the initial state be a Bloch state of the valence band v 
denoted by |vki and the final state be a Bloch state of the 
conduction band c denoted by |ck′i. Consider the absorption 
of a photon of energy ¯hω, of a phonon of energy ¯hωq and 
crystal momentum ¯hq. The total energies of the initial and 
final states are then 

Ei = Evk + ¯hω + ¯hωq 
Ef = Eck+q 
Here we have already used the relationship of k′ = k + q 

due to the momentum conservation. If the phonon is 
absorbed first, the intermediate energy is given by 

(a) Eα = Evk+q + ¯hω 
(b) Eα = Eck+q + ¯hω 
When the photon is absorbed first 
(a) Eα = Eck + ¯hωq 
(b) Eα = Evk+q + ¯hωq 
(neglecting the photon momentum). Processes (a) and (b) 

are mutually distinct only when the initial and final states 
are in different bands. When this is the case the optical 
transitions for processes (b) are forbidden since they depend 
upon a matrix element of the form hvk|vki or hck+q|ck+qi, 
whereas processes (a) entail allowed transitions, therefore 
we do not need to consider processes (b) further. The sum S 
over the intermediate states is therefore 

 
 
If Egk = Eck − Evk is the direct energy gap between bands 

v and c at k we can use Eq.  in the first denominator to write 
the sum thus 

 
 

 

To obtain the total rate associated with the absorption of a 
photon we must add two further terms to the sum, similar in 
form to those in Eq. (3.6) which describe the emission of a 
phonon. If the two terms in Eq. (3.6) are labelled, 
respectively, S1+ and S2+, the similar terms associated with 
phonon emission S1− and S2−, the sum over intermediate 
states is given by S1+ + S2+ + S1− + S2−. In silicon the optical 
absorption edge is associated with a transition between the 
top of the valence band and one of the six  valleys, and in 
germanium between the top of the valence band and one of 
the four L valleys in the conduction band. All of them are 
indirect transitions. The full calculation of the transition rate 
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is rather complicated since it involves eight matrix elements 
(two for each S). Here we only consider a calculation of the 
partial rate arising from important contributions which we 
assume to be embodied in the terms S2+ and S2−, because of 
their small denominators. Since the cross terms between S2− 
and S2+ do not contribute to the rate, we can write 

 
 
The optical matrix element is identical to that for a direct 

transition. The square of the phonon matrix element for a 
given q has the following general form  

 

 
where Ncell is the number of unit cells in the periodic 

crystal, M′ is the appropriate mass of the oscillator, e.g., the 
total mass of the unit cell in the case of acoustic modes, M1 
+M2, or in the case of long-wavelength optical modes the 
reduced mass of 1/(1/M1 + 1/M2). Here M1 and M2 are the 
masses of the two atoms in the unit cell. N(ωq)/V is the 
phonon density 

 
In the case of scattering between valley i and j (inter-

valley) involving a phonon of frequency ωq with an inter-
valley deformation potential constant Dij 

 
where M1 +M2 is the total mass of the unit cell. Thus 

 
where ρ is the mass density, V the volume of the crystal 

within which the photon, electron and photon waves are 
normalized. We assume that inter-valley scattering is 
isotropic and independent of q. 

 

3. INDIRECT OPTICAL TRANSITIONS  

Finally, the optical transition between a valence band |vki 
and a conduction band state becomes 

 
when the transition takes place between valley i and j 

(inter-valley) involving a phonon of frequency ωq with an 
inter-valley deformation potential constant Dij . Nval is the 
number of equivalent conduction band valleys containing 
final states. In Eq. (3.13), the first term headed by N(ωq) 
corresponds to the phonon absorption, while the other term 
is the phonon emission. Only one final state is coupled to a 
given initial state by k conservation for direct inter-band 
transitions. For indirect transitions the situation is different. 
Corresponding to a given initial state |vki there is a spread of 
final states in the conduction band brought about by phonon 
scattering, and hence the transition rate is 

given by 

 
where Nc(E) is the density of states in a given conduction 

band valley. To obtain the total transition rate induced by a 
given photon energy which determines the 
photoluminescence intensity, we have to sum over all 
wvk(¯hω) which correspond to allowed processes, keeping 
¯hω constant. This means summing over all possible initial 
states from Ek = 0 to Ekmax, where 

 
where Eg is the indirect band gap between two bands 

under investigation (between which the optical transitions 
occur). We multiply wvk by Nv(Ek)dEk, where Nv€ is the 
density of states in the valence band. In the case of parabolic 
bands 

 
and hence we obtain 
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where the optical matrix element is approximated by the 
one at the � point. At room temperature N(ωq) ≫ 1, so that 

 
Each type of allowed phonons contributes to the rate 

expressed by the above equation with Dij and ωq 
characterizing the mode. Furthermore, indirect inter-band 
optical transitions differ significantly from direct inter-band 
transitions in their dependence on photon energy. Near the 
threshold energy, Eth = Egｱ¯hωq for indirect transitions, 

while Eth = Eg for direct transitions, the former varies as 
(¯hω−Eth)2 while the latter varies as (¯hω − Eth)1/2. 

 

4. OVERVIEW OF SIC MATERIALS 

 SiC is a wide band gap semiconductor with band gaps of 
3.28 eV (4H) and 3.03 eV (6H), respectively. Due to the 
outstanding properties including high electron mobility, high 
breakdown electric field strength, and high thermal 
conductivity, SiC has an enormous potential for high-
temperature and high-speed-power-device applications, 
which can work under extreme environments. SiC has also 
the strong tolerance to radiation damage, making it a good 
candidate material for defence and aerospace applications. 
Because of the convenience of combining the well developed 
Si process technology, SiC-based devices are easier to 
manufacture compared with other competitors. Starting 
from 1893, when the properties of SiC were first described, 
the research on SiC has received growing attention. 
Continuous progress in the crystal-growth technology of SiC 
has resulted in large size wafers. Of the large number of its 
possible poly types, 4H- and 6H- SiC have now been 
commercially produced in a quality considered appropriate 
for device applications. 

 

 EXPERIMENT AND RESULTS ANALYSIS 

 

Figure 3.2: Scheme of (a) 4H-SiC growth on AlN/Si(100) 

substrate by (b) CVD system. low 

Some studies have shown that porous SiC exhibits intense 

visible luminescence at room temperature.  Room 

temperature photo luminescence spectroscopy of SiC wafers 

has been reported recently with a peak below 2.0 eV.which is 

far away from the wide band gap of SiC. A photo 

luminescence peak at 3.18 eV from 4H-SiC attributed to the 

band edge emission. 

EXPERIMENT AND RESULTS ANALYSIS 

In our work, 4H-SiC films were grown on AlN/Si(100) 

substrates using the chemical vapour deposition (CVD) 

method. In a typical CVD growth process, the wafer  

(substrate) is exposed to one or more volatile precursors, 

which react and or decompose on the substrate surface to 

produce the desired deposit.In this work, the substrate is 

Si(100) with a AlN thin film as a buffer layer. AlN was chosen 

as the buffer layer here because of the small lattice mismatch 

between AlN and SiC.SiH4 and C2H4 were the reaction 

precursors,shown in Fig. 3.2(a). The deposition temperature 

was in the range of 1030-1130◦C. The sample cross section 

structure is schematically shown in Fig. 3.2(b). The AlN layer 

has a thickness of 200–300 nm. The PL measurements were 

carried out at room temperature by a325-nmHe-Cd 
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