
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 833

Comparative Study on Android Design Patterns

Dimple Panchal1

1PG Student, Vivekanand Education Society’s Institute of Technology, Dept. of MCA, Mumbai, India.

--***---

Abstract - Android is a very popular mobile platform, and has managed to take over the majority of the mobile market. It is
true that there are comprehensive studies in the area of design patterns in several object-oriented languages such as Java,
C# and C++. Two main leaders that represent the mobile market are : Apple (IOS) and Google (Android). Android Mobile
platforms completely depend on the developers use and experience. Android Design patterns in software development
have helped in improving software quality. The demand for mobile application development is high and is increasing with
time. In order to stand out, a mobile application should be cost-effective and should be of good quality. The goal for
improving maintainability, the developer begins to apply various design patterns such as MVC, MVVM, and MVP to the
development of Android-based mobile applications. Traditionally, software developers utilize a set of design patterns to
foster reusability and better software design. Mobile apps now target domains that are critical such as health, banking, m-
payments.

Keywords- Mobile Application Development, Android Design Pattern, Android Apps, Maintainability.

I. INTRODUCTION

The Mobile Market has grown in recent years. Compared to computer programs, mobile applications often have limited
functionalities, shorter shelf and lower price. New applications should be developed fast to be cost-effective and updated
often to keep users interested. The quality of the application should not be neglected, as mobile users are very difficult and
competition is stiff. Android development is the process in which new applications are created for devices running on
various Android operating systems. Android-based applications can be written in Kotlin, Java and C++ languages using the
Android Software Development Kit (SDK), while using other languages is also possible. Some Programming languages and
tools allow cross-platform app support that are for both Android and IOS. SDK includes a comprehensive set of
development tools. These include a debugger, libraries, documentation and tutorials. For Instance, Every car requires a
powerful engine; every house requires a solid base, in a similar way every software development procedure requires its
design pattern. To make it happen, we make use of different technologies and architecture patterns. The three types of
most commonly used architectural UI design patterns are MVC, MVP, and MVVM. These design patterns play a significant
role in developing an application which is easier to test, maintain and facilitate reusable object- oriented development.
These architecture patterns are designed to moderate the complex codes and make the UIcode cleaner and manageable.

II. RELATED WORK

Many related works have been done to prove the benefits of various non-architectural design patterns in the development
of software that uses the service, and the results show improved performance post-implementation of the design pattern.
Other studies perform comparisons M-V- Design Pattern and produce recommendations development patterns according
to the character of the existing architectural design patterns. Then there are also studies that discuss the implementation
of the design pattern clearly to a program code. In this study, we concentrate on evaluating the use of software design
patterns on the development of Android based mobile applications using anti pattern measuring the level of carried out
before and after the implementation of the Model-ViewPresenter, Model-View- Controller and Model View View-Model.
This study also makes comparisons between the three model architectural patterns. We do need the architectural design
patterns so that everything should be organized in a proper way. By following a proper architecture we do get simplicity,
Testability and Low-cost maintenance.

III. ARCHITECTURAL DESIGN PATTERNS

A Design pattern is like a model that has been created to solve a problem that occurs concurrently, thus allowing
developers to follow a structure so that they do not have to solve it from scratch, but rather by guiding themselves on
something already existing or previously tested. An architecture pattern allows us to define a guide for the ‘architecture’ of
a software system, making it scalable, maintainable and testable. Differing from design patterns, these have a major
abstraction level. There are 3 different Architectural design patterns:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 834

 1. MVC (Model View Controller)

 2. MVP (Model View Presenter)

 3. MVVM(Model View View-Model)

IV. IMPLEMENTATION

MVC (MODEL VIEW CONTROLLER)

MVC is the first and foremost architectural pattern specially designed for web applications and introduced in the 1970s.
MVC lets you build an foremost architectural pattern specially designed for web applications and introduced in the 1970s.
MVC lets you build an application that eases the efforts to test, maintain and extend the application. During a traditional
software development procedure, we write relevant code or use user control to form the view a part of the definition class.
This procedure increases the size of view class among business operations, data binding logic, and UI. Thus, the MVC
architecture pattern is designed to reduce the code size and make a code –good code. Cleaner and easily manageable.

Fig - 1: MVC (Model View Controller)

Model : Contains models of business logic, i.e. the classes that will model the solution for the problem and objective of the
application.

For Instance, if you are developing an app for a library, the ‘Book’, ‘Author’ and ‘Publishing House’ classes should be in the
package. All of them should be independent from the android component. The data layer, liable for managing the business
logic and handling network or database API.

View : View is an interface that is going to be implemented by all the UIviews, that’s it. Activities, Fragments, Adapters,
Dialogs, etc. All of these are in this package and are responsible for displaying the data to the user. View is just a
visualization from data to model.

Controller : Controller is responsible for ‘listening’ user inputs and updating the model and the view. Normally, the view
and controller are involved in the same java class, Imean, an activity accomplishes the functions as a view and controller at
the same time because it is listening(for example) user clicks and shows answers for them. The best idea is to have the
controller in a separate class.

MVP (MODEL VIEW PRESENTER)

The MVP design has such a ton of likeness to the MVC design. In this design "p"stands for the moderator. The viewmanages
also show the page controls. The Presenter is responsible to address all the UI occasions on sake of the view. It gathers
contributions from the clients at that point and continues the information from side to side the Model that changes the
outcomes back to the View. The Presenter basically performs from the rationale end for signals, for example, press a catch
or coordinate streets through route. MVP design is typically performed with windows structures applications and .NET
Web Forms. This example is undifferentiated from the MVC design during which the regulator has been supplanted by the
moderator. This structure design parts an application into three principle viewpoints : Model, View and Presenter.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 835

Fig - 2: MVP (Model View Presenter)

Model: Model speaks to a lot of classes that portray the business rationale and information. It moreover characterizes
business rules for information implies how the data are regularly changed and controlled.

View: The View speaks to the UIcomponents. It is just subject to showing the data that is gotten from the moderator in
light of the fact that the outcome. This additionally changes the models into UI. In run of the mill executions the view
segments in MVP sends out an interface that is utilized by the Moderator. The moderator utilizes these interface strategies
to control the view. Model strategy names would be: showProgressBar, updateData.

Presenter: The Presenter is at risk for taking care of all UI occasions in the interest of the view. This gets contributions
from clients through the View, at that point measures the client's information with the assistance of Model also, passes the
outcomes back to the View. Not at all like view and regulator, view and moderator are totally decoupled from each other
and conveyed to each other by an interface.

MVVM(MODEL VIEW VIEW-MODEL)

MVVM has been characterized by MVC. MVVM design upholds two official views between View what's more, View-Model.
It permits programmed change inside View-Model to the View. As a rule, the view-model utilizes the eyewitness example
to make changes in the view- model to the mode. MVVM has three key parts that are Model, View, View-Model.

Model: The Model describes a lot of classes to depict business rationale. It additionally plots the business rules for
information on how information can be taken care of or changed. It handles the SQLite Database, Firebase and Shared
Preferences.

Fig - 3: MVVM (Model View View-Model)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 836

View: The View represents UIcomponents such as JQuery, HTML, CSS, and so on. The View is responsible for showing the
information which is recovered from the regulator as a result. It likewise changes the model into the UI. It is liable for
taking care of Menus, Permissions, Occasion Listeners, Toasts, SnackBars, Starting exercises, working with Android View
and Gadget.

View-Model: The View-Model is for introducing capacities, techniques, and orders to maintain the condition of view, work
the model and enact the occasions in the View itself. It is liable for Uncovering information, Input approval, Handling
perceivability, Executing calls and techniques to show furthermore, see. The view model should just figure it out the
apparatus setting.

The application setting can:

1. Start helping.

2. Tie to help.

3. Send a transmission.

4. Register a transmission collector.

5. Burden asset esteems it can't:

6. Show a discourse.

7. Start a movement.

V. APPLICATION AND MERITS/DEMERITS

MVC is more of an architectural pattern, but not for complete application. MVC mostly relates to the UI / interaction layer
of an application.

Fig - 4: MVC Flow

The Controller and therefore the View depend upon the Model: the Controller to update the info, the View to urge the info.
But, most important for the desktop and Web developers at that time: the Model was separated and could be tested
independently of the UI. Several variants of MVC appeared. The best-known ones are associated with whether the Model is
passive or is actively notifying that it's changed. By applying the MVC pattern, you permit the bulk of Android developers
to readily understand your code. You also make it easier to reuse your code later. For example, you'll export your
application template as a library in order that another developer can use it in their application approximately that you
simply can use it in your next app.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 837

Merits:

1. Development of the application becomes fast.

2. Easy for multiple developers to collaborate and work together.

3. Easier to update the application

4. Easier to Debug as we have multiple levels properly written in the application.

5. The Model classes don’t have any reference to Android classes and are therefore straightforward to unit test.

Demerits:

1. The View depends on the Controller and the Model.

2. Due to the large code, the controller is unmanageable.

3. Hinders the Unit testing.

4. Increased Complexity.

The MVP design pattern is preferred over MVC when your application needs to provide support for multiple user interface
technologies. MVP has some risks the presenter is attached to the view forever. The View is an activity which can leak the
activity and update the activities that already died.

Merits:

1. It's very understandable and easier code maintenance because it separates application's model, view and presenter in
layers.

2. View is pretty light, as it only does the visualization as well as it is simple to support (in other words, no more thousands
of code lines)

3. Better testing possibilities, as the whole business logic is separated from the UI and the data is simpler to mock.

4. One may painlessly change the framework, as all ties are described in interfaces.

Demerits:

1. As each interface covers interaction to the tiniest detail, it could result in numerous methods.

2. Code size is quite excessive.

3. Huge amount of interfaces for interaction between layers.

MVVM User interacts with the View. There is a many-to-one relationship between View and View-Model means many
views can be mapped into the View-Model. Supports two way data binding between View and View- Model. View features
a regard to View-Model but View-Model has no information about the View. The figure above shows the architectural
components for the MVVM.

Merits:

1. Using the official Google library that assures a proper generation of components.

2. Review at compilation stage.

3. No need for dozens of findViewById, setOnClickListener or similar code.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 838

Demerits:

1. Similarly in bigger cases, it can be hard to design the View-Model.

2. Debugging would be a bit difficult when we have complex data bindings.

VI. COMPARISONS /ENHANCEMENT FOR ARCHITECTURAL DESIGN PATTERNS

When implementing MVC on Android platform things get tricky. To start out the logic finishes up within the Controller.
Controller here contains all the logic. Controller has responsibility for what’s displayed on the screen.

For simple screens, this will be manageable but as features get added, files will continue to grow. View layer concerns itself
with the views. It doesn’t realize the database and network layers. Moreover, it's difficult to check components once they
are tightly coupled. You ought to test the code that exists within the controller. Much of the code under test will find
yourself wanting to run Android SDK components, like activities, which require a full running device or emulator. Basic
unit testing won't help; you'll need to use expensive instrumented unit tests to check the essential parts of the app. One
alternative to the issues presented by MVC is to decouple a number of the parts from one another. MVP is an architecture
pattern that you simply can use to affect a number of the shortcomings of MVC, and may be a good alternative architecture.
It provides a simple thanks to believe the structure of your app.

One alternative to the problems presented by MVC is to decouple some of the parts from each other. MVP is an
architecture pattern that you can use to deal with some of the shortcomings of MVC, and is a good alternative architecture.
It provides modularity, testability and more cleaner and maintainable codebase.

In MVC, the User input is directed to the Controller first, not the View. The input could be coming from the user interacting
the page but it could even be from simply entering a selected URL during a browser. There’s a many-to-one relationship
between the Controller and therefore the View. That’s because one controller may select different views to be rendered
and support the operation being executed. There's a 1 way arrow from Controller to the View because the View doesn’t
have any knowledge or regard to the Controller. The Controller does pass back the Model, so there's knowledge between
the View and therefore the expected

Model has passed there too, but Controller serves it up.

In MVP, the user input begins from the View, not the Presenter. There's a one-to-one mapping between the View and
therefore the associated Presenter. The View features a regard to the presenter. The Presenter is additionally reacting to
events being triggered from the View, so View is related to it. The Presenter updates the View supporting the actions it
performs on the Model but the View isn't conscious of it. In MVVM, the input begins from the View not the View-Model.
While the View holds a regard to the View Model, the View Model has no information about the View. This is often why it’s
possible to possess a one-to-many mapping between various Views and one View Model. The View has no idea about the
Model during this pattern. There’s rich communication between the View and therefore the View-Model for the info
binding process.

Fig - 5: Comparison

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 839

VI. APP USED FOR IMPLEMENTATION

For the implementation of the architectural patterns for instance the MVC and MVVM main difference is that the API used
is named. In MVC, The API is named again and again whenever there's an invitation from the User. When the user either
turns the screen during a portrait to landscape view the API is named again and again on the request so it becomes difficult
to handle the API request in MVC. MVVM, the API is named just one occasion for the landscape or portrait view so it
becomes easier to handle the request and makes the code run efficiently. It uses Mutable live data which is employed for
observing changes within the view and updating the view when it's active. The appliance is made using the retrofit and
Async task. Retrofit is far more popular than volleyball. The parsing is completed using JSON libraries during which you
only need to create models for JSON nodes and therefore the library automatically converts the JSON into appropriate
objects. Here, we've used the API to fetch the info.

https://www.simplifiedcoding.net/demos/marvel

The above URL is returning an inventory of Marvel Super Heroes. Also uses Recycler view to display the list of heroes and
it's the scrollable view and Glide which loads the image from the URL. The advantage of doing this manner is, if our activity
recreates then it'll not fetch the info again making our application more efficient. In MVP, the presenter is employed to
urge data from the API and send it to the View. The API is named again and again on the request of the user. Here we've
used an equivalent example and an equivalent API for the implementation. The figure below shows the View of the
application.

Fig - 6: Example

VIII. CONCLUSION AND FUTURE WORK

Using a design pattern, on the opposite hand, will increase the amount of lines of code and energy needed to write down
code but on the opposite hand decrease the complexity of program code. This causes an insignificant increase in
maintainability. However, within the end, this study complexity of program code. This causes an insignificant increase in
maintainability. However, within the end, this study proved empirically although Line of code is increasing in order that it
needs more effort to write down program code, use of Design pattern proved to extend maintainability and modularity of
android based mobile application development. This research is predicted to be a source of more in-depth knowledge on
the utilization of design patterns within the world of mobile application development. In fact, there's no specific
architecture implementation you want to use. All depends on your business requirements, time, software team, resources,
etc. i prefer to use MVP once I don't want to write down an excessive amount of code; on the opposite hand, i prefer
implementing Clean Architecture when the project is big and changes might be requested within the future.

REFERENCES

[1]https://www.simplifiedcoding.net/android-Viewmodel-using-retrofit/

[2]https://www.simplifiedcoding.net/demos/marvel/

https://www.simplifiedcoding.net/android-Viewmodel-using-retrofit/
https://www.simplifiedcoding.net/demos/marvel/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 840

 [3]https://www.bacancytechnology.com/blog/mvc-vs-mvp-vs-mvvm

[4]https://android.jlelse.eu/architecture-patterns-in-android-abf99f2b6f70

 [5]https://upday.github.io/blog/model-view-controller/

[6]http://geekswithblogs.net/dlussier/archive/2009/11/21/136454.aspx

[7]https://ieeexplore.ieee.org/document/522317

Design patterns in software development by IEEE

[8]https://ieeexplore.ieee.org/document/522317

[9]https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-design-pattern-6e169567bbad

https://www.bacancytechnology.com/blog/mvc-vs-mvp-vs-mvvm
https://android.jlelse.eu/architecture-patterns-in-android-abf99f2b6f70
https://upday.github.io/blog/model-view-controller/
http://geekswithblogs.net/dlussier/archive/2009/11/21/136454.aspx
https://ieeexplore.ieee.org/document/522317
https://ieeexplore.ieee.org/document/522317
https://ieeexplore.ieee.org/document/522317
https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-design-pattern-6e169567bbad

