

Rough Hyperideals in Join Hyperlattice

S.Ramalakshmi¹, B.Nathiya², S.Nagamarilakshmi³, S.Halwath Kani⁴

1-4Student, Department of Mathematics, Thassim Beevi Abdul Kader College for Women, Kilakarai

Abstract:

In this paper, we consider a rough hyperideals in join hyperlattice. Moreover, we investigate some theorems and properties for rough hyperideals in join hyperlattice.

Keywords:

Rough hyperideals, Hyper congruences, Hyperlattices

Introduction:

In this section, we introduce the notion of rough hyperideals in hyperlattices and discuss some properties of them.

Given a hyperlattice L, by $P^*(L)$ we will denote the set of all nonempty subsets of L. If θ is an equivalence relation on

L, then, for every $a \in L$, $[a]_{\theta}$ stands for the equivalence class of *a* with the represent θ . For any nonempty subset *A* of *L*, we denote $[A]_{\theta} = \{[a]_{\theta} | a \in A\}$. For any $A, B \in P^*(L)$, we denote $A\overline{\theta}B$ if the following conditions hold:

(1) for all $a \in A$, $\exists b \in B$ such that $a\theta b$;

(2) for all $d \in B$, $\exists c \in A$ such that $c\theta d$.

Now, we can introduce the notion of hyper congruences on hyperlattices in the following manner.

Definition 1. Let (L, \land, \mathbb{Z}) be a hyperlattice. An equivalence relation θ on L is called a hyper congruence on L if for all $a, a', b, b' \in L$ the following implication holds: $a\theta a'$, and $b\theta b'$

imply $(a \land b) \overline{\overline{\theta}}(a \land b)$ and $(a \lor b) \overline{\overline{\theta}}(a \lor b)$.

Obviously, an equivalence relation θ on (L, \wedge, \mathbb{Z}) is a hyper congruence if and only if for all $a, b, x \in L$, we have that $a\theta b$ implies $(a \wedge x) \overline{\theta}$ $(b \wedge x)$ and $(a \vee x) \overline{\theta}$ $(b \vee x)$.

Lemma 2. Let (L, \land, \square) be *a* hyperlattice, and let θ be a hyper congruence on *L*. For all $a, b, \in L$, then $[a]_{\theta} \land [b]_{\theta} \subseteq [a \land b]_{\theta} \cdot [a]_{\theta} \lor [b]_{\theta} \subseteq [a \lor b]_{\theta}$.

Proof. Suppose that $x \in [a]_{\theta} \land [b]_{\theta}$, then there exist $x_1 \in [a]_{\theta}$ and $x_2 \in [b]_{\theta}$ such

That $x \in x_1 \land x_2 \in$. Since $a\theta x_1$, $b\theta x_2$, by Definition 1, we have $(a \land b) \theta (x_1 \land x_2)$.

 $x \in x_1 \land x_2$ implies that there exists $y \in a \land b$ such that $x \theta y$. Therefore, we have

 $x \in [a \land b]_{\theta}$, which implies $[a]_{\theta} \land [b]_{\theta} \subseteq [a \land b]_{\theta}$. Similarly, we can prove that

$$[a]_{\theta} \vee [b]_{\theta} \subseteq [a \vee b]_{\theta}.$$

A hyper congruence relation θ on (L, \wedge, \mathbb{Z}) is called \wedge -*complete* if

 $[a]_{\theta} \land [b]_{\theta} = [a \land b]_{\theta}$ for all a, b $\in L$. Similarly, θ is called \mathbb{D} -complete if

 $[a]_{\theta} \vee [b]_{\theta} \subseteq [a \vee b]_{\theta}$ for all a, b $\in L$. We call θ *complete* if it is both \wedge -complete and \mathbb{Z} -Complete. Now, we briefly recall the rough set theory in Pawlak's sense.

Let θ be an equivalence relation on *L*, and let *A* be a nonempty subset of *L*.

Then, the sets $\theta(A) = \{x \in L \mid [x]_{\theta} \cap A \neq \emptyset\}$ and $\theta(A) = \{x \in L \mid [x]_{\theta} \subseteq A\}$ are called, respectively, the *upper and lower approximations* of *A* with respect to θ . $\theta(A) = (\theta(A), \overline{\theta}(A))$ is called a *rough set* with respect to θ .

Proposition 3. Let θ be a hyper congruence on a hyperlattice (L, \land, \square) . If A, B are two nonempty subsets of L, then

(i) $\bar{\theta}(A) \land \bar{\theta}(B) \subseteq \bar{\theta}(A \land B)$. In particular, if θ is a \land -complete, then $\bar{\theta}(A) \land \bar{\theta}(B) = \bar{\theta}(A \land B)$.

(ii) $\bar{\theta}(A) \lor \bar{\theta}(B) \subseteq \bar{\theta}(A \square B)$. In particular, if θ is a \lor -complete, then $\bar{\theta}(A) \lor \bar{\theta}(B) = \bar{\theta}(A \square B)$.

Proof:

Suppose that $x \in \overline{\overline{\theta}}(A) \land \overline{\theta}(B)$. There exist $x_1 \in \overline{\theta}(A)$ and $x_2 \in \overline{\theta}(B)$ such that $x \in x_1 \land x_2$.

It follows that there exists a, b \in L such that a $\in [x_1]_{\theta} \cap A$ and b $\in [x_2]_{\theta} \cap B$. Since θ is a hyper congruence on *L*, we have $a \wedge b \subseteq [x_1]_{\theta} \wedge [x_2]_{\theta} \subseteq [x_1 \wedge x_2]_{\theta}$ by lemma 2.

On the other hand, since $a \land b \subseteq A \land B$, we obtain $a \land b \subseteq [x_1 \land x_2]_{\theta} \cap$

 $(A \land B)$, which implies $x \in x_1 \land x_2 \subseteq \overline{\theta}(A \land B)$. Therefore $\overline{\theta}(A) \land \overline{\theta}(B) \subseteq \overline{\theta}(A \land B)$.

If θ is \wedge -complete, let $x \in \overline{\theta}(A \wedge B)$, then $[x]_{\theta} \cap (A \wedge B) \neq \emptyset$. Therefore, there exists $y \in [x]_{\theta} \cap (A \wedge B)$, and so for some $a \in A$ and $b \in B$, we have $y \in a \wedge b$. Since θ is $a \wedge -$ complete, we can obtain $x \in [y]_{\theta} \subseteq [a \wedge b]_{\theta} = [a]_{\theta} \wedge [b]_{\theta}$.

Thus, there exists $x_1 \in [a]_{\theta}$ and $x_2 \in [b]_{\theta}$ such that $x \in x_1 \land x_2$.

It follows that $a \in [x_1]_{\theta} \cap A$ and $b \in [x_2]_{\theta} \cap B$. Hence, $x_1 \in \overline{\overline{\theta}}(A)$ and $x_2 \in \overline{\overline{\theta}}(B)$, and we have $x \in x_1 \land x_2 \subseteq \overline{\theta}(A) \land \overline{\theta}(B)$. Therefore, $\overline{\theta}(A) \land \overline{\theta}(B) = \overline{\overline{\theta}}(A \land B)$.

(2) is similar to that of (1).

Proposition 4: Let θ be a hyper congruence on a hyperlattice (L, Λ, \mathbb{Z}) and A, B are two nonempty subsets of L, then

- (i) If A and B are two \wedge -hyperideals of L, then $\overline{\theta}(A) \wedge \overline{\theta}(B) = \overline{\theta}(A \wedge B)$.
- (ii) If A and B are two V-hyperideals of L, then $\bar{\theta}(A) \vee \bar{\theta}(B) = \bar{\theta}(A \vee B)$.
 - (1) Let $x \in \overline{\theta}(A \land B)$, then there exist $a \in A$ and $b \in B$ such that $[x]_{\theta} \cap (a \land b) \neq \emptyset$, which implies that there exists $t \in a \land b$ such that $x \theta$ t. Since A is a \land -hyperideal of L, we have $a \land b \subseteq A$. It follows that $t \in A$. Hence, we obtain that $[x]_{\theta} \cap A = [t]_{\theta} \cap A \neq \emptyset$, which implies $x \in \overline{\theta}(A)$. In a similar way, we have $x \in \overline{\theta}(B)$. Thus, $x \in x \land x \subseteq \overline{\theta}(A) \land \overline{\theta}(B)$.

Combining proposition 3, we have $\bar{\theta}(A) \wedge \bar{\theta}(B) = \bar{\theta}(A \wedge B)$.

(2) The proof is similar to that of (1).

Proposition 5: Let θ be a hypercongurence relation on a hyperlattice (L, \wedge , \mathbb{D}). If A and B are \wedge -hyperideals (\mathbb{D} -hyperideals) of L, then $\bar{\theta}(A \cap B) = \bar{\theta}(A) \cap \bar{\theta}(B)$.

Proof: Let $x \in \overline{\theta}(A) \cap \overline{\theta}(B)$, we have $[x]_{\theta} \cap A \neq \emptyset$ and $[x]_{\theta} \cap B \neq \emptyset$. Then, there exist $x_1 \in A$ and $x_2 \in B$ such that $x_1\theta x$ and $x_2\theta x$. It follows from θ which is a hyper congruence relation that $x_1 \wedge x_2\overline{\theta}x \wedge x$, which implies that there exists $t \in x_1 \wedge x_2$ such that $t \theta x$. Since A and B are \wedge -hyperideals of L, we have $x_1 \wedge x_2 \subseteq A \cap B$. So, $t \in A \cap B$. It follows that $[x]_{\theta} \cap (A \cap B) = [t]_{\theta} \cap (A \cap B) \neq \emptyset$, which implies $x \in \overline{\theta}(A \cap B)$. Hence, $\overline{\theta}(A) \cap \overline{\theta}(B) \subseteq \overline{\theta}(A \cap B)$. On the other hand, it is clear that $\overline{\theta}(A \cap B) \subseteq \overline{\theta}(A) \cap \overline{\theta}(B)$. Therefore, $\overline{\theta}(A \cap B) = \overline{\theta}(A) \cap \overline{\theta}(B)$. In a similar way, if A and B are \mathbb{Z} -hyperideals of L, we can also obtain $\overline{\theta}(A \cap B) = \overline{\theta}(A) \cap \overline{\theta}(B)$.

Next, we will introduce and investigate a new algebraic structure called rough hyperideals in join hyper lattices. Let us begin with introducing the following definitions.

Definition 6: Let θ be a hypercongruence on a hyperlattice (L, \wedge , \mathbb{D}), and let A be a non empty subset of L. A is called a lower (an upper)rough sub hyperlattice of L if θ (A)($\overline{\theta}$ (A)) is a sub hyperlattice of L. A is called a rough sub hyperlattice of L if A is both a lower rough sub hyperlattice and an upper rough sub hyperlattice of L.

Similarly, A is called a lower (an upper) rough \land -hyperideal of L if (A)($\bar{\theta}(A)$) is a \land -hyperideal of L. And we call A as rough \land -hyperideal of L if (A) ($\bar{\theta}(A)$) is a \land -hyperideal of L. And we call A as rough \land -hyperideal of L is both a lower rough \land -hyperideal and an upper rough \land -hyperideal of L. In a similar way, a rough \Box -hyperideal of L can be defined.

Example 7: Let L = {a, b, c, d} be the hyperlattice. Let θ be a hyper congruence relation on the hyperlattice L with the following equivalent classes: $[a]_{\theta} = \{a, b\}, [c]_{\theta} = \{c, d\}$. Considering A = {a, b, c}, we can obtain that $(A) = \{a, b\}, \bar{\theta}(A) = L$.

Notice that {a, b} and L are \land -hyperideals, so A is a rough \land -hyperideal of L. If A = {b, c, d}, we have that (A) = {c, d} and $\overline{\theta}(A) = L$. we obtain that {c, d} and L are \mathbb{D} -hyperideals, so A is a rough \mathbb{D} -hyperideal of L.

Example 8: In example 7, $A = \{a, b, c\}$ is a rough \land -hyperideal of (L, \land, \mathbb{Z}) , but A is not a \land -hyperideal of L.

Conclusion:

Hence, we have successfully introduced the Rough hyperideals in join hyperlattice. And we investigated some of their properties.

Reference:

[1] https://www.researchgate.net/publication/340109245_Fuzzy_Soft_Hyperideals_In_Join_Hyperlattices

[2]https://www.researchgate.net/search?context=publicSearchHeader&q=