
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 09 | Sep 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 2871 
 

LSTM-RNN for Radar Data Processing 
Varsha Nimbaragi1, Dr. Smitha Sasi2, V jithesh3   

1Student, Dept. of Telecommunication Engg, Dayananda Sagar College of Engg, Bengaluru, Karnataka, India 
2Professor, Dept. of Telecommunication Engg, Dayananda Sagar College of Engg, Bengaluru, Karnataka, India 

3Scientist E, LRDE, DRDO, C. V. Raman Nagar, Bengaluru, Karnataka, India 
---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract - A Radar data processor connects the obtained 
measurement data and tracks and predicts target parameters 
such as the target position (radial distance, azimuth, and pitch 
angle) and the motion parameters (velocity and acceleration, 
etc.) The data processing is complicated by target maneuvers, 
closely spaced targets, limited resolution of the radar and 
missing measurements. Neural networks like Long Short-Term 
Memory Recurrent Neural Networks (LSTM-RNN) are able to 
model problems with multiple input variables. This is very 
beneficial in time series forecasting, where the other classical 
linear methods can be difficult to adapt to multivariate or 
multiple input forecasting problems. The aim of this project is 
to explore the feasibility of using deep learning techniques 
such as LSTM-RNN in radar data processing to assist in 
scenario generation and tracking.  

Key Words:  Long short term memory, Recurrent neural 
network, TensorFlow, keras, Benchmark Scenarios.  
 

1. INTRODUCTION  

Artificial Intelligence (AI) is showing all sorts of progress in 
many fields and can be applied to many applications. 
Advancement of AI technology made deep learning 
techniques adaptable in many applications. Deep 
Learning is a subfield of machine learning which is 
concerned with algorithms and it is inspired by the structure 
and function of the brain called Artificial Neural Networks 
(ANN). The ability of Deep Learning is that it gives the model 
more flexibility to choose the way to decide how to use data 
to best effect. The application of Knowledge-based expert 
system (KBS) technology is the recent advancement in 
Radar. These classical methods of neural networks proved 
successful in many tasks but complicate the data processing 
as they cannot solve problems with multiple input variables. 
Neural networks like Long Short-Term Memory Recurrent 
Neural Networks (LSTM-RNN) are able to solve problems 
including multiple input variables which is beneficial in time 
series forecasting.  

 Recurrent Neural Networks (RNNs) are networks with 
loops in them, allowing information to continue to exist. 
LSTMs are designed to avoid the long-term dependency 
problem. LSTMs remember the information for long periods 
of time. They don’t struggle to learn. The Long Short-Term 
Memory network or LSTM network is a type of recurrent 
neural network employed in deep learning because very 
large architectures will be successfully trained[1]. In this 

paper, it is discovered how to develop LSTM networks in 
Python using the Keras deep learning library to scenario 
generation and time-series prediction problem. How to 
implement this model has been studied in [2] - [7] 

 Blaire, et. al, had introduced 6 benchmarking trajectories 
in their paper These benchmarking problems are now 
widely used for benchmarking Radar Trackers[8]. 

 The objectives are as follows: (1) Develop a Deep Learning 
Model to generate realistic target scenarios with different 
maneuvering conditions. The scenario shall contain target 
state information such as position, velocity & acceleration. 
These generated scenarios can be used in evaluating a radar 
data processor. (2) Develop a Deep Learning model to 
predict target states and compare these results against a 
multi-model Kalman Filter output. This model may assist in 
coasting when measurement data is not available. The 
predicted states can also be used for fusing with the Kalman 
filter outputs to achieve better accuracy. Google TensorFlow 
Deep Learning framework along with Keras library will be 
used in this study. The development will be carried out in 
Python under the Anaconda environment. 

2. IMPLEMENTATION 

The approach followed for implementing the LSTM based 
tracker is described in this section. The LSTM based tracker 
program has two parts: a Trainer and a Predictor. The 
Trainer program gets trained on a dataset containing a 
training trajectory and saves the trained model. The 
predictor model predicts the next position of the target. 

2.1 Training Data Generation 
  
 A comprehensive set of scenario data of depicting various 
target maneuvering conditions such as constant velocity, 
constant acceleration, level turn, climb, turn with 
acceleration, turn with climb and turn with climb & 
acceleration has to be generated first. This will be performed 
though the implementation of motion models in MATLAB. 
This data is used to develop the LSTM-RNN model. The 
training dataset represent a target trajectory, which consists 
of the target’s position, velocity & acceleration components 
and time. 
 
 The following hyper parameters are to be considered 
during the implementation : Number of Epochs, number of 
LSTM Layers, number of Neurons per hidden layer, LSTM 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 09 | Sep 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 2872 
 

memory length, batch size, Learning Rate, Optimization 
Algorithm, loss function and dropout (Yes or No). 

2.2 Load Dataset  
 
 The first step is to define the number of features in the 
dataset, number of values to be memorized (represented by 
the variable 'lookback') by the LSTM and the percentage of 
data to be used for training. The lookback is set as 100 and 
70% of the data is used for training and the rest of the data is 
used for testing. And next step is to load the dataset into 
memory. The data file is loaded into memory using the 
Pandas read_csv() function. 

2.3 LSTM Data Pre-processing and  Preparation  

  
 Here, the next step is to prepare the dataset for the LSTM. 
This involves framing the dataset as a supervised learning 
problem and normalizing the input variables. All the features 
are normalized using a min-max scalar to fit into the range 
[0, 1], and then the dataset is transformed into a supervised 
learning problem. The entire training dataset has to be 
converted to arrays of two sets, where the first set 
containing number of samples equal to ‘lookback’ and the 
second set contains the next sample. 

2.4 Define the LSTM Model 

  
 In this section, fit an LSTM on the multivariate input data. 
First, split the prepared dataset into train and test sets, then 
splits the train and test sets into input and output variables. 
Finally, the inputs (X) are reshaped into the 3D format 
expected by LSTMs, namely [no. of samples, lookback, no. of 
features].  
 
 Now LSTM model can be defined and fit it for the training 
data. The model definition varies as the no. of layers and the 
no. of neurons per layer are hyper parameters. Different 
values have to be tried to fine-tune these parameters to 
arrive at the optimum number of layers and number of 
neurons. A 3-hidden layer LSTM model with 150 neurons in 
the first hidden layer, 150 neurons in the second hidden 
layer and 100 neurons in the last layer is considered here. 
The output layer has 9 neurons representing the 9 features 
in the scenario. Mean Absolute Error (MAE) loss function 
with the efficient “RMSprop” version of stochastic gradient 
descent is used in this implementation. 

2.5 Train the Model 

  
 The model is then trained for 40 epochs with a batch size 
of 32. During this training, 30% of the training data is used 
for validation. During training Callbacks are used to get a 
view on internal states of the model. The 
tf.keras.callbacks.ModelCheckpoint call back allows to 
continually save the model both during and the end of the 

training. The model is saved only when there is an 
improvement in the validation accuracy. Once the training 
phase was completed, the trained LSTM model with best 
validation accuracy got saved in to a hierarchical data format 
(.hd5). 
--- 
Epoch 00039: val_acc did not improve from 0.99716 
Epoch 40/40 
12320/12320 [==============================] - 
1815s 147ms/step - loss: 3.9384e-05 - acc: 0.9960 - val_loss: 
1.3530e-05 - val_acc: 0.9977 
 
Epoch 00040: val_acc improved from 0.99716 to 0.99773, 
saving model to 
Scenario_Predictions_Scaled_Circular_3Features_1500U_100
LB_Noisy.hdf5 
dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) 
 Plots showing the model accuracy & model loss during 
training & validation are shown below: 
 

 
Fig -1: Accuracy Plot 

 

Fig -2: Loss plot 

2.6 The LSTM Predictor 
 
 This is the second module of the LSTM tracker. This 
program loads the trained LSTM model and the 
measurements. It then pre-processes the measurements to 
the format required by LSTM. It may be noted that, as our 
LSTM model has a lookback of 100, the LSTM based tracking 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 09 | Sep 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 2873 
 

can start only after receiving 100 measurements. It will start 
predicting the 101th position based on the first 100 
measurements, 102th measurement based on the previous 
100 measurements, and so on. As the data is scaled before 
passing to the LSTM model, an inverse scaling is performed 
after the prediction to bring back the predicted position to 
the original scale. These predicted positions are then saved 
to a .csv file and is used to compare against the 
measurements and the output of an IMM based tracker. 

2.7 IMM Filter Implementation 
  
 The Interacting Multiple Model (IMM) algorithm, 
assumes that the transition between different models is 
subject to the finite Markov chain of the given transition 
probability, and obtains the state estimate of the target by 
accounting for the interaction between several models. The 
models interact with one another to track the maneuver of a 
target. The IMM algorithm implemented here uses e filters: a 
Constant Velocity (CV) Kalman Filter, a Constant 
Acceleration (CA) Kalman Filter and a Constant Turn (CT) 
Kalman Filter. The MATLAB toolbox namely, Sensor Fusion 
and Tracking Toolbox is used for the implementation. 

3. EVALUATION 

In order to evaluate the trained LSTM model, a two-step 
approach has been followed. In the first step, the trained 
model was asked to predict the last 30% of the training 
dataset. In the second step, first 100 samples (as the look 
back was taken as 100) of six radar tracker benchmark 
scenarios were given to the trained model to predict the 
101th samples, samples 2 to 101 were given to predict 
sample 102, and so on so that the entire scenario gets 
predicted. In both cases the performances of the LSTM 
model were compared against that of a 3-model Kalman 
Filter based IMM tracker. The prediction output for the last 
30% of the unused training data is shown in below figures.  

 
Fig -3: IMM Vs Measured Vs LSTM 

 Here 'Measured' is the true data, 'IMM' is the data 
predicted by a 3-model IMM filter and 'LSTM' is the output of 
our LSTM model. Each time step in x-axis is 100 ms. 

4. RESULTS AND DISCUSSIONS 

The results show that there is very good agreement between 
the three datasets.  

4.1 Performance on Benchmark Scenarios 
  
 Blaire, et. al, had introduced 6 benchmarking trajectories 
in their paper. These benchmarking problems are now 
widely used for benchmarking Radar Trackers. 
 
 The targets under this benchmark perform as much as 
seven gs of lateral acceleration and two gs of longitudinal 
acceleration. Target range can vary from 20 km to 120 km, 
while the target elevation angle varies from 2o to 80o. Since 
only one radar face is used, the bearing of the target will be 
confined to 60o. 

 

Fig -4: 3D View of the 6 Benchmark Scenarios 

LSTM & IMM outputs for few benchmark scenarios are 
shown below: 

 

Fig -5: Comparison of LSTM Results with IMM Results & 
True Scenario for Benchmark 1 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 09 | Sep 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 2874 
 

 

Fig -6: Comparison of LSTM Results with IMM Results & 
True Scenario for Benchmark 1 (x-coordinate) 

 

Fig -7: Comparison of LSTM Results with IMM Results & 
True Scenario for Benchmark 2 (y-coordinate) 

 

Fig -8: Comparison of LSTM Results with IMM Results & 
True Scenario for Benchmark 6 (z-coordinate) 

 It is evident that in all the six cases, LSTM based model 
provided results as good as a state-of-the-art tracking 
algorithm like IMM.  

5. CONCLUSION 

 The objective of this work is to explore the feasibility of 
using deep learning in Radar tracking. The results obtained 
with the benchmark trajectories are very much promising 
and are as good as the results of a 3-model IMM Kalman 
tracker. As no trace of any previous work could be found in 
the literature, I can proudly say that this is very first study 
on the usage of AI techniques in radar target tracking. The 
results can further be improved by adding velocity 
components, acceleration components and target heading as 
training inputs. But this will add more complexity to the 
LSTM model. 

REFERENCES 

[1] Christopher Olah, Understanding LSTM Networks, 
https://colah.github.io/posts/2015-08-Understanding-
LSTMs/, August 27, 2015.  

[2] Bakker, Indra den, Python Deep Learning Cookbook, 
Packt Publishing Ltd, 2017. 

[3] Francois chollet, Deep Learning With Python, Manning 
Publications, 2018. 

[4] J.Patterson,A.Gibson, Deep Learning: A Practitioner’s 
Approach, O’Reilly Media, 2017. 

[5] Nikhil Buduma, Nicholas Locascio, Fundamentals of 
Deep Learning, O’Reilly Media, 2017. 

[6] Nishant Shukla, Kenneth Fricklas, Machine Learning 
With TensorFlow, Manning Publications Co, 2017. 

[7] Phil Kim, MATLAB Deep Learning: With Machine 
Learning, Neural Networks and Artificial Intelligence, 
APRESS, 2017. 

[8] W.D. Blair, G. A. Watson, T. Kirubarajan, Y. Bar-Shalom, 
"Benchmark for Radar Allocation and Tracking in ECM." 
Aerospace and Electronic Systems IEEE Trans on, vol. 
34. no. 4. 1998. 

[9] https://machinelearningmastery.com/time-series-
prediction-lstm-recurrent-neural-networks-python-
keras/ 

 

https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/

