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Abstract – This research paper reports the design, 
construction and a novel control system for a two-wheeled 
self-balancing robot. The system architecture comprises of a 
pair of DC motors and an Arduino Uno R3 microcontroller 
board, a 3-axis gyroscope and a 3-axis accelerometer 
(employed for altitude determination). The constructed two-
wheeled robot is essentially the real-time model of an inverted 
pendulum open-loop system which is inherently highly 
unstable without feedback control and has nonlinear 
dynamics. The proposed balancing algorithm consists of 
training a feedforward neural network using the 
backpropagation algorithm to learn to balance the bot 
through supervised learning on the basis of a training routine 
which runs at startup. In addition, the linear quadratic 
estimation algorithm (LQE) along with a complementary filter 
are used to compensate for gyro drifts. Our experimental 
results show that the proposed feedforward neural network 
balancing technique can learn to balance the bot within a 
short span of time and that too with considerably lesser 
oscillations about the equilibrium point as compared to the 
standard PID controller, thereby increasing the system’s 
elegance. Our designed bot is a compact and cost-effective 
protype that showcases the efficiency and complex-learning 
capability of artificial neural networks (ANNs). 
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1. INTRODUCTION AND RELATED WORKS 
 
Over the past decade, robots capable of motion have stepped 
out of military and industrial avenues, and entered civilian 
spaces such as hospitals, schools and ordinary homes. 
although many of these robots for civil applications are 
somewhat mechanically stable, like ‘Aibo’ the Sony robotic 
dog, or four-wheeled intelligent vacuum cleaners, one that 
every day on-lookers would find awe-inspiring is the Segway 
personal transport. It is a mechanically unstable, two-wheel 
self-balancing mode of transport that has seen deployment 
for law-enforcement, tourism, and personal use. This vehicle 
can be appropriately called a robot because in the absence of 
the sensory capabilities and intelligent controls that 
accompany each robot, the Segway can never stay upright. 
While the Segway may have been a famous commercial 

product, research into the control of such a mechanical 
system has been quite divergent.  

Besides the development of Segway, studies of two-wheel 
self-balancing robots have been widely reported. For 
example, JOE [1] and nBot [2] are both early versions 
complete with inertia sensors, motor encoders and on-
vehicle microcontrollers. Since then, there has been active 
research on the control design for such platforms, including 
classical and linear multivariable control methods nonlinear 
backstepping controls, PID controller, application of discrete 
Kalman filters, fuzzy-neural control, Linear-quadratic 
regulators (LQR) and combinations of the above [3][4]. Many 
intelligence algorithms have been implemented to tackle the 
equilibrium problem posed by wheeled inverted pendulums 
such as fuzzy control [5][6], control schemes based on 
support vector machines [7], operant conditioning theory 
[8], etc. 

The two-wheeled robot is an amalgamation of the wheeled 
mobile robot and the inverted pendulum system [9]. It also 
incorporates the concept of creating a vehicle for humans. 
The inverted pendulum is a dynamically unstable and non-
linear open-loop system with a single-input, multi-output 
system setting (SIMO) where the center of mass is above the 
pivot point of the system. This system is therefore a classic 
problem in dynamics and control theory and is commonly 
used as a benchmark for testing control system techniques.  
The wheeled inverted pendulum is not actuated on its own 
and must be actively balanced in order to remain upright. It 
uses gyroscopes and accelerometers to detect the inclination 
of the vertical axis and in order to overcome the inclination, 
the controller generates torque signals to each motor in 
order to prevent the system from falling. It is a control 
system model in which the object can be manipulated only 
by adding additional load to it. Wheeled inverted pendulums 
have thus become a novel challenge and implementing 
balancing algorithms to solve their equilibrium problem 
attract the interest of many researchers. 

Although there are many research-works in this field, only a 
minority have been directed to make clear comparisons 
between standard control system techniques such as PID 
controllers and LQR feedback controllers and the relatively 
new artificial-intelligence based neural network controllers. 
We attempt to do just that. Based on the dynamic theory, we 
will analyze the self-balancing system, establish a 
mathematical model, and explain the working of the neural 
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net in the most detailed and lucid fashion. Moreover, a 
simulation will be performed, which demonstrates the 
working and efficiency of the same. 

2. CONSTRUCTION OF THE ROBOT 
 

1. CHASIS: Our frame involves the use of acrylic sheets. We 
have used metallic rods of diameter 3mm to hold our 3-
tiered structure in place. The top portion houses the 
gyroscope sensor along with the 9V batteries. The middle 
sheet contains the Arduino Uno R3 microcontroller board 
and another 9V battery. Finally, the bottom layer contains 
the driver motor controller and 2 DC geared motors. 
 

2. MOTORS: The motors we have used are standard DC geared 
motors which operate at 12V to give 300 rpm and generate 
1.5 kg-cm of torque. 
 

3. MOTOR CONTROLLER: We have used the L298N motor 
controller which is dual H-bridge motor driver which allows 
speed and direction control of two DC motors at the same 
time. The module can drive DC motors that have voltages 
between 5 and 35V, with a peak current up to 2A. 
 

4. GY-521 MODULE: This measures the angle of the tilt of the 
robot. A function is used to call the values of the same. The 
GY- 521 module is a breakout board for the MPU-6050 
MEMS (Microelectromechanical system) that features a 3-
axis gyroscope, a 3-axis accelerometer, a digital motion 
processor (DMP), and a temperature sensor. The digital 
motion processor can be used to process complex 
algorithms directly on the board. Usually, the DMP 
processes algorithms that turn the raw values from the 
sensors into stable position data. The sensor values are 
retrieved by using the I2C serial data bus, which requires 
only two wires (SCL and SDA). Here, we used the MPU6050 
Arduino library which consists of reverse-engineered 
functions to utilize the DMP present on-board the MPU-
6050 to calculate yaw, pitch and roll. 
 

5. ARDUINO UNO R3: Arduino Uno R3 is a microcontroller 
board based on the ATmega328P (datasheet). It has 14 
digital input/output pins (of which 6 can be used as PWM 
outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB 
connection, a power jack, an ICSP header and a reset 
button. 

 
6. JUMPER WIRES: Male to male and female to male wires. 
 

 
 
 
 
 
 

 
 

Fig. 1: Schematic model for a wheeled inverted pendulum 

 
Fig. 2: Front view of constructed robot 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Top view of constructed robot 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 09 | Sep 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3878 
 

 
 

Fig 4: Circuit Schematic 

 
3. ALGORITHMS USED 
 
3.1 PID CONTROLLER APPROACH 
 
We explore two approaches to maintaining the upright 
nature of the robot. The first method is using a PID 
controller. The Proportional Integral Derivative controller 
(PID) is a control loop feedback mechanism which is now 
widely used in industrial control systems and a plethora of 
other applications that require continuously modulated 
control [10]. The PID controller continuously computes an 
error value as the disparity between the desired setpoint 
(SP) and the measured process variable (PV) and initiates a 
correction on the basis of proportional, integral, and 
derivative terms, denoted by P, I, and D respectively which 
gives the controller its name. Technically, it maps accurate 
and responsive correction to a control function. PID 
comprises of three parts: (1). The proportional part is used 
to directly control the magnitude of the response. If the value 
of Kp is too high or too low, the system becomes unstable. 
(2). The integral part is used to average past error and 
accelerate the movement of the process towards the 
setpoint. (3). The derivative part is to predict the error in the 
future through previous error variations. The final control 
value is calculated by simply adding these three terms 
together. The formula is as follows: 

                     
(1) 

 

 
Fig 5: PID Controller Block Diagram 

 

Algorithm to adjust Kp, Ki and Kd values: - 

 After setting the I and D terms to 0, we adjust the 
value of P so that the robot begins to oscillate about 
the mean position. P should be big enough for the 
robot to move but not too large which would 
hinder smooth movement. 

 With P appropriately identified, I is increased so that 
the robot accelerates faster when off balance. With 
P and I properly adjusted, the robot should be able 
to balance itself for at least a few seconds. 

 Next, the value of D is decided so that the robot will 
be able to move about its balanced position in a 
gentler fashion. Also, there should not be any 
significant overshoots. 

 If the first attempt does not lead to satisfying results, 
one should reset the PID values and repeat the 
process above until you arrive at a satisfactory 
result.  

 While fine tuning, the PID values are confined to 
neighboring values and its effects are observed in 
practical situations 

 
3.2 FEEDFORWARD NEURAL NET APPROACH 

In our proposed approach, we employ a feedforward neural 
network in order to control a two wheeled self-balancing robot. 
The robot does not do anything additional to self-balancing, 
there exists no method for directional control. Keeping in mind 
the Arduino Uno's 2K SRAM constraint, the program uses a 
neural net with a single input node, two hidden nodes and a 
single output node. The program first uses a training routine 
which takes only a few seconds to finish so it can be run every 
time the robot is started. Here, the bot needs to be held upright 
while the neural network routine gets trained using the 
backpropagation algorithm. The input sensor values (tilt angle of 
the robot) is mapped to a value between 0 and 1. This value is 
sent to the neural network model which then returns an output 
from the sigmoid activation layer which is between 0 and 1. 
Finally, we map these output values to a useful value for the DC 
motors, between -255 to 255 in this case. 

 
Fig 6: Feedforward Neural Network Architecture 

4. METHODOLOGY 

In order to obtain information regarding the spatial 
orientation of the robot, we make use of the Kalman filter, 
which is also known as the Linear Quadratic Estimation 
(LQR) algorithm in conjugation with the Complementary 
filter in order to reverse-engineer the DMP (Digital Motion 
Processing) algorithm of the GY-521 Breakout Board which 
uses the InvenSense MPU-6050 6-Axis Accelerometer and 
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Gyroscope Module. The DMP functions are called and used in 
order to get precise and accurate values for the Yaw, Pitch 
and Roll of our mechanically unstable system. 

The Pitch value is then used in order to understand and 
calculate the vertical tilt angle of the robot so that the robot 
can then rectify its orientation. This is done by providing 
Pulse-Width Modulated Signals (PWM) in order to make the 
motors run slower or faster, depending on the tilt angle. The 
PWM signals can be sent within a range of -255 to 255 and 
thus a PID controller is used in order to compute the value to 
be sent as PWM. Now, in order to calculate the PWM value we 
need to give an input to the PID controller and a Setpoint or that 
it can calculate the error (Setpoint – Input) and then give an 
output which will ultimately reduce the error. Here we provide 
the tilt angle of robot when held at vertical as the input. The 
input tilt angle keeps changing depending on the surface on 
which the robot is kept and thus we need to change the value in 
the code.  
However, in our neural net application none of these parameters 
need to be set. We simply use the back-propagation algorithm 
and incorporate the neural net with a single input node, two 
hidden nodes and a single output node. 
 
Instead of tinkering with all the values of Kp, Ki and Kd required 
for the PID Controller, we simply call a training routine during 
initialization or the robot during which the bot needs to be held 
upright and steady. The bot feeds this vertical tilt angle as the 
input angle to the training set and computes the error. 
 
In this case, we are using the Sigmoid Activation Function for the 
neural net. The graph for the function is as follows- 

Fig. 7: Sigmoid Activation Function 

 

The hyperparameters set for the neural net are as follows- 

Parameter Value 

Learning Rate 0.3 

Momentum 0.9 

Initial Weights 0.5 

Success 0.0015 

Sample Time (mS) 0.005 

Loop Timer (mS) 4 

Input Node 1 

Hidden Nodes 3 

Output Node 1 

Table 1: Optimized Hyperparameter values of FNN 

The parameter ‘Success’ has been given a value of 0.0015. 
The error calculated as the difference in the required Set 
Point (Vertical tilt angle) and the Current Angle (Real-Time 
Tilt Angle) is supposed to be less than the value of success in 
order to keep the robot upright and the neural net provides 
the output required in order to do that. This output is then 
linearly mapped onto the range of -255 to 255. This value is 
then used as the magnitude of the PWM signal. 

So greater the value given to the PWM signal, more is the 
torque provided by the motor and thus the bot is able to 
maintain its upright position. 

5. RESULTS AND DISCUSSION 
 
We employed both approaches on our constructed robot, in 
order to compare and infer as to which algorithm worked 
better. 
 
The first approach was the PID Controller approach where 
the following steps were taken- 
 

 The desired setpoint was set as 6.10 (degrees from 
the vertical). 

 The value of Kp after extensive experimenting, was 
set to 90 as it was optimal and made the bot 
oscillate about the balance position. 

 The value of Ki was set to 250 as it made the 
balancing more efficient and provided more torque 
to the motors at higher tilt angles. 

 The value of Kd was set at 2.15 since any value 
more than that made the robot jitter and any value 
less than that made the robot fall. 
 

The next approach was the Neural Net approach where the 
following steps were taken- 

 The desired setpoint was set as 6.10 (degrees from 
the vertical). 

 The value of Learning Rate was tinkered with, and it 
was found that a value of 0.3 made the bot balance 
perfectly without oscillating at high frequencies 
and causing large deviations. 

 A high learning rate made the output change 
frequently and this caused the motors to 
frequently change speed, thus making the robot 
oscillate and jitter. 

 The momentum and initial weights were set as 0.9 
and 0.5 respectively based on hit and trial. 
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 The Success value was kept as 0.0015 since all 
values higher or lower to that caused a significant 
change in the error calculation and caused the DMP 
function to be called frequently, thus making 
changes to the output more than required making 
the robot jitter a lot. 

Furthermore, we used the serial graph plotter present in 
the Arduino IDE Software in order to visualize and analyze 
the motor control signals under wheel synchronization in 
Fig. 8. It can be clearly seen that the wheel synchronization 
is effective. 
 

 
Fig. 8: PWM Motor Control Signals 

 
The Arduino IDE Software’s Serial Graph was also used in 
order to plot a graph between the tilt angle and time passed. 
These graphs were plotted for both the approaches and it can 
be seen in Fig. 9 that stability with PID control is marginal. 
Meanwhile, much more improved stability is obtained using 
the Neural Net and the tilt angle deviates way less using the 
Neural net. 

 

Fig. 9: Experimentally obtained history of tilt angle: PID 
controller (top), Neural Net (Bottom) 

6. CONCLUSION 

Neural Net approaches for self-balancing are not as widely 
used as PID controllers, however based on our extensive 
research we can conclude that the Feedforward Neural 
Network was able to balance the robot much better than the 
PID Controller. As seen from the results, the PID Controller 
requires extensive tuning of the Kp, Ki and Kd values. These 
values are specific to a system and are different for every 

system. Thus, the same values cannot be used for another 
robot. However, the parameters set in the neural net are 
universal and thus this approach does not require any tuning 
whatsoever. The neural net code simply needs to be uploaded 
on to the Arduino Uno Microcontroller and the robot starts 
balancing itself. In conclusion, the Neural Net approach is an 
interesting and reliable way to balance the robot since it 
makes the bot oscillate less around the balance point and 
thus keeps the bot steady for a longer period of time. 
Meanwhile, the PID controller works better when it is 
subjected to manual disturbances/imbalances. When the bot 
is provided with a slight push and caused to imbalance, the 
PID controller is able to provide the higher torque required 
and balances the bot but the Neural Net often fails to do so, 
causing the robot to fall. In conclusion, we have successfully 
constructed a compact and cost-effective two-wheeled self- 
balancing robot using low-cost components. The self-
balancing challenge was tackled using two different 
approaches, a fine-tuned PID controller and a 3-layered 
feedforward neural network trained using backpropagation 
algorithm and suitable comparisons were drawn between 
them. 
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