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Abstract: Anomaly detection (also outlier detection [1]) is the identification of rare items, events or observations which 
raise suspicions by differing significantly from the majority of the data.[1] Typically the anomalous items will translate to 
some kind of problem such as bank fraud, a structural defect, medical problems or errors in a text. Anomalies are also 
referred to as outliers, novelties, noise, deviations and exceptions. [2]  

In particular, in the context of abuse and network intrusion detection, the interesting objects are often not rare objects, but 
unexpected bursts in activity. This pattern does not adhere to the common statistical definition of an outlier as a rare 
object, and many outlier detection methods (in particular unsupervised methods) will fail on such data, unless it has been 
aggregated appropriately. Instead, a cluster analysis algorithm may be able to detect the micro clusters formed by these 
patterns. [3]  

Three broad categories of anomaly detection techniques exist.[4] Unsupervised anomaly detection techniques detect 
anomalies in an unlabeled test data set under the assumption that the majority of the instances in the data set are normal 
by looking for instances that seem to fit least to the remainder of the data set. Supervised anomaly detection techniques 
require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier (the key difference to 
many other statistical classification problems is the inherent unbalanced nature of outlier detection). Semi-supervised 
anomaly detection techniques construct a model representing normal behavior from a given normal training data set, and 
then test the likelihood of a test instance to be generated by the learnt model. 

1. Introduction 

In machine learning, the detection of “not-normal” 
instances within datasets has always been of great interest. 
This process is commonly known as anomaly detection or 
outlier detection. The probably first definition was given by 
Grubbs in 1969 [1]: “An outlying observation, or outlier, is 
one that appears to deviate markedly from other members 
of the sample in which it occurs”. Although this definition is 
still valid today, the motivation for detecting these outliers 
is very different now. Back then, the main reason for the 
detection was to remove the outliers afterwards from the 
training data since pattern recognition algorithms were 
quite sensitive to outliers in the data. This procedure is also 
called data cleansing. After the development of more robust 
classifiers, the interest in anomaly detection decreased a 
lot. However, there was a turning point around the year 
2000, when researchers started to get more interested in 
the anomalies itself, since they are often associated with 
particular interesting events or suspicious data records. 
Since then, many new algorithms have been developed 
which are evaluated in this paper. In this context, the 
definition of Grubbs was also extended such that today 
anomalies are known to have two important 
characteristics: 

1. Anomalies are different from the norm with respect to 
their features and 

2. They are rare in a dataset compared to normal instances. 

Anomaly detection algorithms are now used in many 
application domains and often enhance traditional rule-
based detection systems. 

1.1 Categorization of Anomaly Detection 

 Anomaly Detection Setups 

In contrast to the well-known classification setup, where 
training data is used to train a classifier and test data 
measures performance afterwards, there are multiple 
setups possible when talking about anomaly detection. 
Basically, the anomaly detection setup to be used depends 
on the labels available in the dataset and we can distinguish 
between three main types as illustrated in Fig 1: 

1) Supervised Anomaly Detection describes the setup 
where the data comprises of fully labeled training and 
test data sets. An ordinary classifier can be trained first 
and applied afterwards. This scenario is very similar to 
traditional pattern recognition with the exception that 
classes are typically strongly unbalanced. Not all 
classification algorithms suit therefore perfectly for 
this task. For example, decision trees like C4.5 [20] 
cannot deal well with unbalanced data, whereas 
Support Vector Machines (SVM) [21] or Artificial 
Neural Networks (ANN) [22] should perform better. 
However, this setup is practically not very relevant due 
to the assumption that anomalies are known and 
labeled correctly. For many applications, anomalies are 
not known in advance or may occur spontaneously as 
novelties during the test phase. 
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2) Semi-supervised Anomaly Detection also uses training 
and test datasets, whereas training data only consists 
of normal data without any anomalies. The basic idea 
is, that a model of the normal class is learned and 
anomalies can be detected afterwards by deviating 
from that model. This idea is also known as “one-class” 
classification [23]. Well-known algorithms are One-
class SVMs [24] and autoencoders [25]. Of course, in 
general any density estimation method can be used to 
model the probability density function of the normal 
classes, such as Gaussian Mixture Models [26] or 
Kernel Density Estimation [27]. 

3) Unsupervised Anomaly Detection is the most flexible 
setup which does not require any labels. Furthermore, 
there is also no distinction between a training and a 
test dataset. 

 

 

 

 

 

 

 

Fig 1. Different anomaly detection modes depending on the 
availability of labels in the dataset. (a) Supervised anomaly 
detection uses a fully labeled dataset for training. (b) Semi-
supervised anomaly detection uses an anomaly-free 
training dataset. Afterwards, deviations in the test data 
from that normal model are used to detect anomalies. (c) 
Unsupervised anomaly detection algorithms use only 
intrinsic information of the data in order to detect 
instances deviating from the majority of the data. 

The idea is that an unsupervised anomaly detection 
algorithm scores the data solely based on intrinsic 
properties of the dataset. Typically, distances or densities 
are used to give an estimation what is normal and what is 
an outlier. This article only focuses on this unsupervised 
anomaly detection setup. 

 Anomaly Detection Algorithm Output 

As an output of an anomaly detection algorithm, two 
possibilities exist. First, a label can be used as a result 
indicating whether an instance is an anomaly or not. 
Second, a score or confidence value can be a more 
informative result indicating the degree of abnormality. For 
super-vised anomaly detection, often a label is used due to 
available classification algorithms. On the other hand, for 
semi-supervised and unsupervised anomaly detection 
algorithms, scores are more common. This is mainly due to 
the practical reasons, where applications often rank 
anomalies and only report the top anomalies to the user. In 

this work, we also use scores as out-put and rank the 
results such that the ranking can be used for performance 
evaluation. Of course, a ranking can be converted into a 
label using an appropriate threshold. 

2. Related Work 

It could already be inferred from the previous sections that 
this article primarily deals with multivariate tabular data. 
Differently structured data, such as graphs or sequential 
data, is often processed in machine learning using 
dedicated algorithms. This also holds true in anomaly 
detection and there exist many algorithms for detecting 
anomalies in graphs [30], in sequences and time series [31] 
and for addressing spatial data [32]. However, these 
specialized algorithms are not evaluated in this work, 
which focuses on tabular data. 

Not many comparative studies on unsupervised anomaly 
detection do exist today. On the one hand, authors of newly 
proposed algorithms compare their results with state-of-
the-art techniques, for example LOF and k-NN, but often 
datasets are not published and the evaluation lacks in some 
other evaluation criteria (local vs. global or parameter k). 
On the other hand, some studies have been published 
referring to a specific application scenario, often with a 
single dataset only. Lazarevic et al. [33] compared LOF, k-
NN, PCA and unsupervised SVM for intrusion detection 
using the KDD-Cup99 dataset. A similar study by Eskin et 
al. [34] evaluates clustering, k-NN as well as a one-class 
SVM on the same dataset. A broader study using six 
different methods for unsupervised anomaly detection was 
performed by NASA [14] for detecting engine failures of 
space shuttles. Unfortunately, the dataset is not available 
and the algorithms used are besides GMM and one-class 
SVMs four commercially available software systems. Aus-
lander et al. [35] applied k-NN, LOF and clustering on 
maritime video surveillance data. Ding et al. [36] studied 
SVDD, a k-NN classifier, k-means and a GMM for detecting 
anomalies in ten different datasets. Although the authors 
claim to evaluate unsupervised techniques, the use of a 
training phase indicates a semi-supervised setup to our 
understanding. Carrasquilla [37] published a study on 
comparing different anomaly detection algorithms based 
on 10 different datasets. Unfortunately, only one 
unsupervised anomaly detection algorithm was applied, 
whereas its results were compared to other supervised 
anomaly detection algorithms. Some of the datasets used in 
this study are also used as a basis in our evaluation, but 
with an appropriate preprocessing. All related work 
concerning the particular algorithms used in this study can 
be found in the next section. 

Besides studies evaluating a single algorithm only, 
outlier ensembles [38, 39] is a technique of combining 
multiple unsupervised anomaly detection algorithms in 
order to boost their joint anomaly detection performance. 
Since unsupervised anomaly detection does not rely on 
labeled data, this task is very challenging and often 
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restricted to simple combinations. In this article we do not 
evaluate ensembles, although the results reported here 

might serve as a selection criteria for these algorithms in 
this currently evolving new research field. 

2.1 Unsupervised Anomaly Detection Algorithms 

Unsupervised anomaly detection algorithms can be roughly categorized into the following main groups [15] as illustrated 
in Fig 3: (1) Nearest-neighbor based techniques, (2) Clustering-based methods and (3) Statistical algorithms. Recently, also 
a new group is emerging based on (4) Subspace techniques. In this work, we cover all of these categories with a focus on 
nearest-neighbor and clustering-based anomaly detection, the by far most used categories in practice. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. A taxonomy of unsupervised anomaly detection algorithms comprising of four main groups. Note that CMGOS can be 
categorized in two groups: It is a clustering-based algorithm as well as estimating a subspace of each cluster

Furthermore, other algorithms exist, which are not direct 
members of these categories, often based on available 
classification algorithms such as neural networks [25] or 
support vector machines [40]. It is not an easy task to select 
a proper subset for this work keeping in mind that dozens 
of different algorithms have been proposed. However, our 
selection is based on practical applications in the past and 
attention in the scientific community. Since one goal of this 
work is also to standardize datasets, we also welcome 
other researchers to compare their pro-posed methods 
with the results presented here. In this section, we shortly 
introduce the algorithms and their main ideas, but due to 
the high number of algorithms, the interested reader is 
referred to the authors original publication for more 
details. 

2.13 One-Class Support Vector Machine 

One-class support vector machines [24] are often used for 
semi-supervised anomaly detection [15]. In this setting, a 
one-class SVM is trained on anomaly-free data and later, 
the SVM classifies anomalies and normal data in the test 
set. One-class SVMs intend to separate the origin from the 
data instances in the kernel space, which results in some 
kind of complex hulls describing the normal data in the 
feature space. Although one-class SVMs are heavily used as 
a semi-supervised anomaly detection method, it is an 
unsupervised algorithm by design when using a soft-
margin. In particular, it has been shown that they converge 
to the true density level set [57]. In the unsupervised 
anomaly detection scenario, the one-class SVM is trained 
using the dataset and afterwards, each instance in the 

dataset is scored by a normalized distance to the 
determined decision boundary [40].  

The parameter ν needs to be set to a value lager than zero 
such that the contained anomalies are correctly handled by 
a soft-margin. Additionally, one-class SVMs have been 
modified such that they include further robust techniques 
for explicitly dealing with outliers during training [40]. The 
basic idea is that anomalies contribute less to the decision 
boundary as normal instances. Two different techniques 
were developed, whereas the η one-class SVM showed 
superior results. In this enhancement, η is a further 
optimization objective during training, which estimates the 
normality of an instance. In our evaluation we are using 
both unsupervised algorithms, the regular one-class SVM as 
well as the extended η one-class SVM. 

3. Methodology 

3.1 Reviewing Algorithm Complexities and 
Implementation 

Concerning the nearest-neighbor based algorithms with the 
exception of LOCI, the computational complexity of finding 
the nearest-neighbors is O(n2). The remaining 
computations, for example the density or LOF calculations, 
can be neglected in practice (less than 1% of runtime). 
Thus, all of these algorithms perform similar in terms of 
runtime. In our implementation, we used many 
optimizations so that the algorithms still perform well on 
large-scale datasets. In particular, first duplicates are 
removed from the data and a weight matrix is stored. This 
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procedure might reduce the dataset size and thus save 
computation time. Memory consumption was reduced by 
storing only the top-k-neighbors during the search. 
Additionally, a smart parallelization technique was 
implemented depending on the number of dimensions. 
More information about the enhancements can be found in 
[50]. For LOCI, the computational complexity is O(n3) and 
the memory complexity is O(n2), which makes the 
algorithm practically too demanding for real-world 
applications. aLOCI on the contrary is faster and the 
runtime depends on the number of quad-trees to be used. 

Concerning the cluster-based methods (except for 
CMGOS-MCD), the main computational complexity is due to 
the clustering algorithm, which is typically faster than 
O(n2) if k-means is applied. In practice, when k-means is 
run several times in order to get stable clustering result, 
the runtime advance is reduced but still present. For large-
scale datasets and big data, clustering-based methods have 
thus a performance advance compared to nearest-neighbor 
based methods. However, CMGOS-MCD is an exception here 
since the MCD computation is again quadratic for each 
cluster. Furthermore, as already mentioned, HBOS is even 
faster than the clustering-based algorithms and a good 
candidate for near real-time large-scale applications. 

The complexity of the one-class SVM based algorithms is 
hard to determine since it depends on the number of 
support vectors and thus on the structure of the data. 
Furthermore, the applied gamma tuning of the SVMs has a 
huge impact on runtime since its computation has a 
quadratic complexity. Lastly, the complexity of rPCA is O(d2 
n + d3) and therefore depends heavily on the number of 
dimensions. If the number of dimensions is small, the 
algorithm competes in practice among the fastest 
algorithms in our trials.  

3.1 Datasets for Benchmarking 

Although unsupervised anomaly detection does not utilize 
any label information in practice, they are needed for 
evaluation and comparison. When new algorithms are 
proposed, it is common practice that an available public 
classification dataset is modified and the method is com-
pared with the most known algorithms such as k-NN and 
LOF. There is a set of typically used datasets for 
classification, which are retrieved from UCI machine 
learning repository [61]. The typical preprocessing 
comprises of selecting one class as the anomalous class and 
sub-sampling some small amount of instances from that 
randomly. Unfortunately, the resulting datasets are hardly 
published and cannot be regenerated by other scientists. 
Since the number of anomalies is typically very low, a 
different subset might result in very different detection 
scores. To this end, we only found three different datasets 
available online [62, 63]. With this work we want to 

Table 1. The 17 datasets used for comparative evaluation of 
the unsupervised anomaly detection algorithms from 

different application domains. A broad spectrum of size, 
dimensionality and anomaly percentage is covered. They 
also differ in difficulty and cover local and global anomaly 
detection tasks. 

Dataset #points #di
m. 

#outlier
s (%) 

Lympho  148 18 6 (4.1%) 

WBC  278 30 21 (5.6%) 

Glass 214 9 9 (4.2%) 

Vowels  1456 12 50 (3.4%) 

Cardio  1831 21 176 (9.6%) 

Thyroid  3772 6 93 (2.5%) 

Musk 3062 166 97 (3.2%) 

Satimage-
2 

5803 36 71 (1.2%) 

Letter 
Recogniti
on  

1600 32 100 
(6.25%) 

Speech  3686 400 61 (1.65%) 

Pima  768 8 268 (35%) 

Satellite  6435 36 2036 
(32%) 

Shuttle  49097 9 3511 (7%) 

BreastW  683 9 239 (35%) 

Arrhythm
ia  

452 274 66 (15%) 

Ionospher
e  

351 33 126 (36%) 

Mnist  7603 100 700 (9.2%) 

Optdigits  5216 64 150 (3%) 

Http 
(KDDCUP
99)  

567479 3 2211 
(0.4%) 

ForestCov
er  

286048 10 2747 
(0.9%) 

Mulcross  262144 4 26214 
(10%) 

Smtp 
(KDDCUP
99)  

95156 3 30 (0.03%) 

Mammogr
aphy  

11183 6 260 
(2.32%) 

Annthyroi
d 

7200 6 534 
(7.42%) 

Pendigits  6870 16 156 
(2.27%) 

Ecoli 336 7 9 (2.6%) 

http://odds.cs.stonybrook.edu/lympho/
http://odds.cs.stonybrook.edu/wbc/
http://odds.cs.stonybrook.edu/glass-data/
http://odds.cs.stonybrook.edu/japanese-vowels-data/
http://odds.cs.stonybrook.edu/cardiotocogrpahy-dataset/
http://odds.cs.stonybrook.edu/thyroid-disease-dataset/
http://odds.cs.stonybrook.edu/musk-dataset/
http://odds.cs.stonybrook.edu/satimage-2-dataset/
http://odds.cs.stonybrook.edu/satimage-2-dataset/
http://odds.cs.stonybrook.edu/letter-recognition-dataset/
http://odds.cs.stonybrook.edu/letter-recognition-dataset/
http://odds.cs.stonybrook.edu/letter-recognition-dataset/
http://odds.cs.stonybrook.edu/speech-dataset/
http://odds.cs.stonybrook.edu/pima-indians-diabetes-dataset/
http://odds.cs.stonybrook.edu/satellite-dataset/
http://odds.cs.stonybrook.edu/shuttle-dataset/
http://odds.cs.stonybrook.edu/breast-cancer-wisconsin-original-dataset/
http://odds.cs.stonybrook.edu/arrhythmia-dataset/
http://odds.cs.stonybrook.edu/arrhythmia-dataset/
http://odds.cs.stonybrook.edu/ionosphere-dataset/
http://odds.cs.stonybrook.edu/ionosphere-dataset/
http://odds.cs.stonybrook.edu/mnist-dataset/
http://odds.cs.stonybrook.edu/optdigits-dataset/
http://odds.cs.stonybrook.edu/http-kddcup99-dataset/
http://odds.cs.stonybrook.edu/http-kddcup99-dataset/
http://odds.cs.stonybrook.edu/http-kddcup99-dataset/
http://odds.cs.stonybrook.edu/forestcovercovertype-dataset/
http://odds.cs.stonybrook.edu/forestcovercovertype-dataset/
http://personal.gscit.monash.edu.au/~kmting/Mass
http://odds.cs.stonybrook.edu/smtp-kddcup99-dataset/
http://odds.cs.stonybrook.edu/smtp-kddcup99-dataset/
http://odds.cs.stonybrook.edu/smtp-kddcup99-dataset/
http://odds.cs.stonybrook.edu/mammography-dataset/
http://odds.cs.stonybrook.edu/mammography-dataset/
http://odds.cs.stonybrook.edu/annthyroid-dataset/
http://odds.cs.stonybrook.edu/annthyroid-dataset/
http://odds.cs.stonybrook.edu/pendigits-dataset/
http://odds.cs.stonybrook.edu/ecoli-dataset/
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Dataset #points #di
m. 

#outlier
s (%) 

Wine  129 13 10 (7.7%) 

Vertebral  240 6 30 (12.5%) 

Yeast  1364 8 64 (4.7%) 

Seismic  2584 11 170 (6.5%) 

Heart  224 44 10 (4.4%) 

Table 1 ODDS dataset overall architecture 

Compensate this shortcoming and present and publish 
more different meaningful datasets, such that algorithms 
are better comparable in the future. Please note that some 
of the datasets have already been introduced previously in 
the first author’s Ph.D. Thesis [29] We also put a strong 
emphasis on a semantic background such the evaluation 
makes sense. This includes the two assumptions that (1) 
anomalies are rare and (2) are different from the norm. 
Additionally, we consider only point anomaly detection 
tasks as meaningful datasets for benchmarking since a 
different preprocessing might again lead to non-
comparable results. For example, the dataset Poker Hand, 
which was used for evaluation before [37], is not used 
because the anomalies (special winning card decks) violate 
the assumption (2). Similarly, the use of the very popular 
KDD-Cup99 dataset needs special attention, which was 
originally used for benchmarking intrusion detection 
classification systems. Many attacks (anomalies) in the 
dataset define a collective anomaly detection problem and 
can thus not be used. Since the dataset is so popular, a point 
anomaly detection task was extracted as stated below. 

If the following, we describe the datasets and our 
preprocessing in more detail. All modifications have been 
made publicly available 
(http://odds.cs.stonybrook.edu/#table1). A summary 
about the resulting dataset characteristics is given below in 
Table 1. 

3.2 Dataset Summary 

All dataset characteristics are summarized in Table 1. With 
our dataset selection, we cover a broad spectrum of 
application domains including medical applications, 
intrusion detection, image and speech recognition as well 
as the analysis of complex systems. Additionally, the 
datasets cover a broad range of properties with regard to 
dataset size, outlier percentage and dimensionality. To our 
knowledge, this is the most comprehensive collection of 
unsupervised anomaly detection datasets for algorithm 
benchmarking. As already stated, we published the datasets 
to encourage researchers to compare their proposed 
algorithms with this work and hope to establish an 
evaluation standard in the community. 

4. Result and Discussion 

4.1 Comparative Evaluation 

Comparing the anomaly detection performance of 
unsupervised anomaly detection algorithms is not as 
straight forward as in the classical supervised classification 
case. In contrast to simply compare an accuracy value or 
precision/recall, the order of the anomalies should be 
taken into account. In classification, a wrongly classified 
instance is for sure a mistake. This is different in 
unsupervised anomaly detection. For example, if a large 
dataset contains ten anomalies and they are ranked among 
the top-15 outliers, this is still a good result, even if it is not 
perfect. To this end, a common evaluation strategy for 
unsupervised anomaly detection algorithms is to rank the 
results according to the anomaly score and then iteratively 
apply a threshold from the first to the last rank. This results 
in N tuple values (true positive rate and false positive rate), 
which form a single receiver operator characteristic (ROC). 
Then, the area under the curve (AUC), the integral of the 
ROC, can be used as a detection performance measure. A 
nice interpretation of the AUC is also given when following 
the proof from [70] and transform it into the anomaly 
detection domain: The AUC is then the probability that an 
anomaly detection algorithm will assign a randomly chosen 
normal instance a lower score than a randomly chosen 
anomalous instance. Hence, we think the AUC is a perfect 
evaluation method and ideal for comparison. However, the 
AUC only takes the ranking into account and completely 
neglects the relative difference of the scores among each 
other. Other measures can be used to cope with this 
shortcoming by using more sophisticated rank 
comparisons. Schubert et al. [38] com-pares different rank 
correlation methodologies, for example Spearman’s ρ and 
Kendall’s τ as an alternative to AUC with a focus on 
targeting outlier ensembles. A second possible drawback of 
using AUC might be that it is not ideal for unbalanced class 
problems and methods like area under precision-recall 
curve or Matthews correlation coefficient could possibly 
better emphasize small detection performance changes. 
Nevertheless, AUC based evaluation has been evolved to be 
the de facto standard in unsupervised anomaly detection, 
most likely due to its practical interpretability, and thus 
also serves as the measure of choice in our evaluation. 

Please note that the AUC, when it is used in a traditional 
classification task, typically involves a parameter, for 
example k, to be altered. In unsupervised anomaly 
detection, the AUC is computed by varying an outlier 
threshold in the ordered result list. As a consequence, if a 
parameter has to be evaluated (for example different k), 
this yields to multiple AUC values. Another important 
question in this context is how to evaluate k, the critical 
parameter for most of the nearest-neighbor and clustering-
based algorithms. In most publications, researchers often 
fix k to a predefined setting or choose “a good k” depending 
on a favorite outcome. We believe that the latter is not a 
fair evaluation, because it somehow involves using the test 

http://odds.cs.stonybrook.edu/wine-dataset/
http://odds.cs.stonybrook.edu/vertebral-dataset/
https://archive.ics.uci.edu/ml/datasets/Yeast
http://odds.cs.stonybrook.edu/seismic-dataset/
https://archive.ics.uci.edu/ml/datasets/SPECTF+Heart
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data (the labels) for training. In our evaluation, we decided 
to evaluate many different k’s between 10 and 50 and 
finally report the averaged AUC as well as the standard 
deviation. In particular, for every k, the AUC is computed 
first by varying a threshold among the anomaly scores as 
described above. Then, the mean and standard deviation 
for all these AUCs is reported. This procedure basically 
corresponds to a random-k-picking strategy within the 
given interval, which is often used in practice when k is 

chosen arbitrarily. The lower bound of 10 was chosen 
because of statistical fluctuations occurring below. For the 
upper bound, we set a value of 50 such that it is still 
suitable for our smaller datasets. We are aware, that one 
could argue to increase the upper bound for the larger 
datasets or even make it smaller for the small datasets like 
breast-cancer. Fig 8 shows a broader evaluation of the 
parameter k illustrating that our lower and upper bound is 
in fact useful. 

4.2 Time Complexity comparison: From the table we easily see that the time complexity is calculated based on 17 
datasets in which the OCSVM model is best with respect to time taken by the model. 

 

Table 2. Time complexity comparison of ODDS dataset 

4.3 ROC Performance Comparison: We have perform the ROC performance among various outlier prediction ABOD, 
CBLOF, FB, HBOS, IForest KNN, LOF, MCD, OCSVM and PCA, For the dataset lympho CBLOF, FB, HBOS, IForest, KNN, LOF, 
MCD, OCSVM and PCA are results in 100% accuracy and for dataset musk outlier prediction model IForest, MCD, OCSVM 
and PCA achieved 100 % accuracy. So from table we can conclude that OCSVM is best anomalies / outlier detection model 
for multivariate dataset.  
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Table 3. ROC performance comparison of ODDS dataset 

4.4 Precision Performance Comparison: We have perform the Precision performance among various outlier prediction 
models ABOD, CBLOF, FB, HBOS, IForest KNN, LOF, MCD, OCSVM and PCA, For the dataset lympho CBLOF, FB, HBOS, 
IForest, KNN, LOF, MCD, OCSVM and PCA are results in 100% precision and for dataset musk outlier prediction model 
IForest, MCD, OCSVM and PCA achieved 100 % precision. So from table we can conclude that OCSVM is best anomalies / 
outlier detection model for multivariate dataset.  

 

Table 4. Precision performance comparison of ODDS dataset. 

4.5 Computation Time Comparison of Algorithms: If 
determinable, the theoretical computational complexity of 
the evaluated algorithms was already discussed. However, 
in practice, the actual computation times may still be quite 
differ-ent from each other. For this reason, the computation 
times were measured and are listed in Table 5. Please note 
that the listed times are measured in seconds for the first 
nine datasets and in minutes for the last column, the large 

kdd99 dataset. The time was measured on a single thread 
basis. For the clustering-based algorithms, the computation 
time depends strongly on the number of clusters. For that 
reason, the times for 10 and 50 clusters are listed 
separately for each algorithm. 

Except for the very demanding LOCI algorithm, it can be 
seen that the computation for the small datasets is 
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sufficiently fast, such that the choice of an appropriate 
algorithm should focus on detection performance, not on 
runtime. On the contrary, for large datasets, computation 
time differences are significant. For example, for the largest 
dataset kdd99, the fastest algorithm HBOS took less than 4 
seconds, whereas the slowest GMGOS-MCD took more than 
6 days. 

In general, it can be observed that nearest-neighbor 
based algorithms have almost identical runtimes. This is 
due to the fact, that the nearest-neighbor search is 
responsible for most of the computation time, whereas the 
(different) computation of the scores itself has almost no 
influ-ence. Furthermore, it can be confirmed that the 
clustering-based algorithms (except for CMGOS-MCD) are 
faster than the nearest-neighbor based algorithms with the 
quadratic search complexity. Please keep in mind that the 
time includes the execution of ten different runs of the 
underlying k-means algorithm. At this point, we would like 
to state again, that the use of CMGOS-MCD is not 
recommended. HBOS is by far the fastest algorithm among 
all, which is due to its very simple idea of assuming 
independence of the features. The comparable high 
runtimes of the SVM based algorithms are mainly based on 
the automatic gamma tuning, which has a quadratic 
complexity. For example, for the aloi dataset, the gamma 
tuning takes about 16 hours, whereas the core SVM 
training is only 30 seconds for the η one-class SVM and 16 
minutes for the regular one-class SVM. 

Overall comparison of anomalies detection models have 
been done using python and dependent libraries, e.g., 
scikit-learn, we will use Python 3.5 or newer for the latest 
functions and bug fixes. 

Required Dependencies: combo>=0.0.8, numpy>=1.13, 
numba>=0.35, scipy>=0.19.1, scikit_learn>=0.19.1 and 
Optional Dependencies keras (optional, required for 
AutoEncoder), matplotlib (optional, required for running 
examples) pandas (optional, required for running 
benchmark),tensorflow (optional, required for 
AutoEncoder, other backend works), xgboost (optional, 
required for XGBOD).  

Outlier detection often suffers from model instability due to 
its unsupervised nature. Thus, it is recommended to 
combine various detector outputs, e.g., by averaging, to 
improve its robustness. Detector combination is a subfield 
of outlier ensembles. 

Four score combination mechanisms are shown in this 
demo: 

1. Average: average scores of all detectors. 

2. Maximization: maximum score across all 
detectors. 

3. Average of Maximum (AOM): divide base 
detectors into subgroups and take the maximum 
score for each subgroup. The final score is the 
average of all subgroup scores. 

4. Maximum of Average (MOA): divide base 
detectors into subgroups and take the average 
score for each subgroup. The final score is the 
maximum of all subgroup score 

 
Fig 3. Comparison of all anomalies / outlier detection models 
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5. Conclusion 

A comprehensive evaluation of 19 different unsupervised 
anomaly detection algorithms on 17 datasets from different 
application domains has been performed for the first time. 
The datasets have been made publicly available 
(http://odds.cs.stonybrook.edu/#table1) and therefore a 
foundation for a fair and standardized comparison for the 
community was introduced. Besides supporting the 
unsupervised anomaly detection research community, we 
also believe that our study and our implementation is 
useful for researchers from neighboring fields. Now, it is 
easy to apply the discussed methods on new data. The 
broad variety of our evaluation datasets might guide for 
appropriate algorithm selection in new application 
domains. 

In particular, our findings include that local anomaly 
detection algorithms, such as LOF, COF, INFLO and LoOP 
tend to perform poorly on datasets containing global 
anomalies by generating many false positives. The usage of 
these algorithms should be avoided if it is known that the 
task is to detect global anomalies only. On the contrary, 
global anomaly detection algorithms perform at least 
average on local problems. This yields in our 
recommendation to select a global anomaly detection 
algorithm if there is no further knowledge about the nature 
of anomalies in the dataset to be analyzed. 

As a general detection performance result, we can conclude 
that nearest-neighbor based algorithms perform better in 
most cases when compared to clustering algorithms. Also, 
the stability concerning a not-perfect choice of k is much 
higher for the nearest-neighbor based meth-ods. The 
reason for the higher variance in clustering-based 
algorithms is very likely due to the non-deterministic 
nature of the underlying k-means clustering algorithm. 
Despite of this disadvantage, clustering-based algorithms 
have a lower computation time. As a conclusion, we 
recommend to prefer nearest-neighbor based algorithms if 
computation time is not an issue. If a faster computation is 
required for large datasets, for example in a near real-time 
setting, clustering-based anomaly detection might be the 
method of choice. For small datasets, clustering-based 
methods should be avoided. 

Among the nearest-neighbor based methods, the global k-
NN algorithm is a good candidate on average. Although 
LoOP was the best performing nearest-neighbor based 
algorithm on four datasets, it unfortunately fails 
significantly one some datasets. Especially for the global 
anomaly detection problems this algorithm should be 
totally avoided. Besides our recommendation for k-NN, LOF 
is also a good candidate if it is previously known that the 
anomaly detection problem to be solved involves local 
anomalies. 

Concerning the clustering-based algorithms, the simple 
uCBLOF algorithm also shows on average good 

performance for all datasets, illustrating that a more 
sophisticated and compute intense density estimation is 
not necessarily required. In terms of computational 
complexity, clustering-based algorithms are faster than 
their nearest-neighbor competitors. However, in practice, 
we advice to restart the underlying k-means algorithm 
multiple times in order to obtain a stable clustering 
outcome. This procedure unfortunately often takes away 
the advantage of the theoretical speedup, which leads on 
the small datasets even to longer runtimes com-pared with 
the nearest-neighbor based algorithms. Nevertheless, when 
processing speed is very important or a clustering model 
can be updated in a data streaming application, a 
clustering-based algorithm might be used. Besides our 
recommendation for uCBLOF, CMGOS-Reg also seems to 
perform reliable on most of the datasets. On the contrary, 
the original CBLOF algorithm should be avoided due to an 
algorithm design flaw. Also, the CMGOS with the subspace-
based MCD density estimation should not be the first 
choice, since the density estimation is too slow and 
detection performance is worse. 

The statistical algorithm HBOS, which assumes 
independence of the features, surprisingly showed very 
good results in our evaluation. It is even the best 
performing algorithm on four out of our 10 datasets. Due to 
the very fast computation time, especially for large 
datasets, we highly recommend to give it a try on large-
scale datasets when looking for global anomalies. 

One dataset with 400 dimensions was a big challenge for all 
of the algorithms, most likely due to the curse of 
dimensionality. In this context, only nearest-neighbor 
based algorithms with a very small k < 5 were useful at all. 
Since in unsupervised anomaly detection k can typically not 
be determined, we might conclude that unsupervised 
anomaly detection fails on such a high number of 
dimensions. 

As a general summary for algorithm selection, we 
recommend to use nearest-neighbor based methods, in 
particular k-NN for global tasks and LOF for local tasks 
instead of clustering based methods. If computation time is 
essential, HBOS is a good candidate, especially for larger 
datasets. A special attention should be paid to the nature of 
the dataset when applying local algorithms, and if local 
anomalies are of interest at all in this case. We have 
summarized our recommendations for algorithm selection 
in Table 6 with respect to the anomaly detection 
performance (accuracy), the stability of the scoring 
(deterministic), the sensitivity to parameters, the 
computation time for larger datasets (speed) and whether 
the algorithm is applicable for datasets having global 
anomalies only. Please note, that the judgments in the table 
assume that the general recommendations as given above 
are followed. 
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