

Status Monitoring and Over Current Protection for Textile Machine

Mehak Mushtaq¹, Er Priya sharma²

¹PG Scholar, Department of Electrical Engineering, Institute of Engineering and Technology Bhaddal, Rupnagar ²Assistant Professor, Department of Electrical Engineering, Institute of Engineering and Technology Bhaddal, Rupnagar

Abstract - *The Present work is dedicated about the system is* structure may also be carried out in order to ensure that the designed to monitor the environmental status in which the geotechnical structure and its positions with a high risk of controller boards are installed and current consumed by their failure and harm are detected at an early stage, which is drivers. Every parameter is associated with certain values up to conducive to prevention and maintenance[4-5].

which the parameter value can be accepted. Proposed system continuously monitors and compares the sensor values obtained 2. PROBLEM FORMULATIONS and perform the necessary action to prevent the drastic outcome. The textile machine (Autoconer AC338). In this system current consumed by the drum motor and environmental environmental factors such as condition around the controller boards are measured. The parameters that cause the fault for the electronic devices employed in the controller board are Temperature, Humidity, overcurrent etc. If boards are cased within the housing there is no knowledge about burst out condition of board. Smoke sensors are employed to detect it. Proximity sensor is used to detect the physical properties of almost all materials are modified by whether the machine controller board is fixed inside the housing changes in temperature, and the speed of most chemical or not. Machine controller board will turn on red light indicator in case of any error in its operation. Light Dependent Resistor will be used to detect the red light indicator status. The system starts to continuously monitor the current and environmental condition. The input parameters are allowed up to certain limit. The design and simulation is done in proteus and labview 18.0

Key Words: Status Monitoring, over current, Textile Machine, Autocorner, labview.,

1. INTRODUCTION

Electronic components have a wide variety of modes of failure. It is possible to define these in different ways, such as by time or cause. Excess temperature, excess current or voltage, ionising radiation, stress or effects, and many other factors may be responsible for failures. Problems in the product package in semiconductor devices can cause failures due to In addition to the static temperature, the correction due to contamination, mechanical stress of the device, or open or temperature cycle, the temperature raising in the junction of short circuits[1]. Electronic goods are subjected to robust the electronic component and also considers the influence of conditions such as temperature, humidity, and moisture in the temperature when materials of different coefficients of spinning industries. Such prevailing atmospheric conditions linear expansion are welded on the same board. increase the rate of failure of components. The failure of electronic devices can lead to dramatic changes in the b) Humidity and Saline Environment application system as a whole. The device is designed to constantly track the environmental situation around the goods Moisture is found in nearly all environments and probably it is and warn the consumer about the prevailing condition in order the chemical factor that causes more deterioration of different to resolve this result. In critical situations, the system is also materials. The impurities contained in the Humidity causes designed to take the appropriate action. Geotextiles are also various chemical problems such as corrosion of many metals. moving into the field of multifunctional intelligence with the The humidity, when condensed, can be considered a physical introduction of optical fibre sensors into geotextiles[2-3]. agent, since many flexible materials at low temperatures When intelligent geotextiles are used to improve the become hard and brittle due to humidity condensation. In geotechnical structure, health monitoring of the geotechnical addition, most gases readily dissolve in humidity, which may

Electronic component failure can be caused by some of the

a) Temperature

Temperature is the environmental factor that most accelerates the degradation of electronics components, among all the environmental factors that may influence the reliability. Since reactions is also influenced by the temperature of the reactants, temperature changes can cause catastrophic failures due to deterioration of the components. In the following are described the major means by which temperature can affect the robustness of the components.

- High Temperatures: cause catastrophic failures and a) chemical degradation of electronic components.
- b) Low temperatures: cause mechanical stresses produced by differences in the coefficients of expansion and solidification of the liquid components.
- c) Thermal Shock: provide internal mechanical stress in structural elements, particularly when dissimilar materials are encapsulated.

produce other chemical harms to the reliability of the multiple nodes simultaneously, LabVIEW can execute components. Even though the presence of humidity can cause inherently in parallel. Multi-processing and multithreading deterioration, its absence can also cause problems, since the hardware is exploited automatically by the built-in scheduler, properties of many materials, especially non-metallic, depend which multiplexes multiple OS threads over the nodes ready on an optimal level of humidity. Humidity and saline for execution. In LabVIEW the programming model is based on environments degrade the performance of the equipment Dataflow model. In data flow model represent, the function because, in many situations, they promote corrosion and/or performed by the VIs only when all required inputs are electrolysis of the metal components. They may also produce a available at its input section. LabVIEW integrates the creation film of salt in nonmetallic parts, coming to create leak paths of user interfaces (termed front panels) into the development and degradation of the insulation and dielectric properties of cycle. LabVIEW programs- subroutines are termed virtual these materials.

c) Overcurrent

situation where a larger than intended electric current exists are inputs: they allow a user to supply information to the VI. through a conductor, leading to excessive generation of heat, Indicators are outputs: they indicate, or display, the results and the risk of fire or damage to equipment. Possible causes based on the inputs given to the VI. Front panel consist of for overcurrent include short circuits, excessive load, incorrect control palette which comprises of the front panel elements in design, or a ground fault. Overcurrent is any current load in it. excess of the safety rating of equipment or the capacity of a conductor. Overcurrent may result from an overload, a short **b) Block diagram** circuit, or a ground fault. Overcurrent does not always cause a fire. The magnitude and direction of the overcurrent must be The back panel, which is a block diagram, contains the sufficient to heat the wire to a temperature that ignites graphical source code. All of the objects placed on the front surrounding combustibles. Sustained overcurrent that can panel will appear on the back panel as terminals. The back cause damage or fire (called overload). An overcurrent exists panel also contains structures and functions which perform when the normal load current for a circuit is exceeded. [14]It operations on controls and supply data to indicators. The can be in the form of an overload or short-circuit. When structures and functions are found on the Functions palette applied to motor circuits an overload is any current, flowing and can be placed on the back panel. within the normal circuit path that is higher than the motor's normal full load amperes (F.L.A.). A short-circuit is an overcurrent which greatly exceeds the normal full load current of the circuit. Also, as its name infers a short-circuit leaves the normal current carrying path of the circuit and takes a -short cut|| around the load and back to the power source. Motors can be damaged by both types of currents.

3. SIMULATION DESCRIPTION

3.1 LAB VIEW VERSION 18.0

Laboratory Virtual Instrument Engineering Workbench (Lab VIEW) is a system- design platform and development PCI-based GPIB controller boards offer a simple, seamless environment for a visual programming language from National bridge between the PC and the GPIB instrument. Additionally, Instruments. The graphical language is named "G". Lab VIEW is stand-alone GPIB controllers communicate via serial, USB, or commonly used for data acquisition, instrument control, and industrial automation on a variety of operating systems (OS) including Microsoft Windows, various versions of Unix, Linux, and macOS.

3.1.1 Graphical Programming Language

The programming paradigm used in LabVIEW is based on data availability. Execution flow is determined by the structure of a graphical block diagram on which the programmer connects different function-nodes by drawing wires. These wires propagate variables and any node can execute as soon as all its

instruments (VIs). Each VI has three components:

a) Front panel

In an electric power system, overcurrent or excess current is a The front panel is built using controls and indicators. Controls

c) Connector panel

To use a VI as a subVI, you need to build a connector pane. Every VI displays a connector pane, shown as follows, next to the VI icon in the upper right corner of the front panel window.

3.2 ASSEMBLING GPIB INSTRUMENT CONTROL SYSTEM

A basic GPIB Instrument Control system consists of following parts:

a) Setting up the PC

Ethernet/LXI. As a result GPIB instruments can transmit their data across the room or around the world. Additionally, the National Instruments Instrument Driver Network has more than 7000 instrument drivers to choose from, as well as tutorials on how to use them to control your instrument.

b) Configuring the Controller

Depends on the GPIB controller manufacturer, some kind of instrument control software driver will need to be installed before the device will function. National Instruments GPIB controllers come with their own GPIB driver and Measurement input data become available. Since this might be the case for & Automation Explorer (MAX). MAX scans for connected

necessary handles for programming.

c) Connecting GPIB Controller to Instrument

Once the controller is installed and working properly, the GPIB cable can be connected from the controller to the instrument. In accordance with the IEEE 488.2 standard, with a single controller you can control up to 15 different instruments connected in either a daisy-chain or star topology.

3.3 FRONT PANEL AND CONTROL PALETTE

3.3.1 Front Panel

Front panel is the window which comprises of the set of indicators, controls, connector pane in it shown in Fig 3.3.1. During code execution the input, output, graphical values are displayed here.

Fig.3.3.1: Front Panel

3.3.2 CONTROL PALETTE

Control palette is found in front panel The Controls palette contains the controls and indicators you use to create the front panel. You access the Controls palette from the front panel window by selecting View » Controls Palette or by right clicking on any empty space in the front panel window. The Controls palette is broken into various categories; you can expose some or all of these categories to suit your needs.

Fig.3.3.2: Controls and Indicators

instruments, confirms communication, and creates the Back panel is the window where the programming is done in Lab VIEW. Back panel shown in Fig 3.3.3 provides the space for the functions to be picked and placed to create the coding. It is provided with the function palette where the programmer can pick the required function and can create the design.

Fig.3.3.3: Block Diagram or Back Panel

The DHT22 is a basic, low-cost digital temperature and humidity sensor. It is used to measure temperature and humidity. It uses a capacitive humidity sensor and a thermistor to measure the surrounding air, and spits out a digital signal on the data pin (no analog input pins needed). It's fairly simple to use, but requires careful timing to grab data. The only real downside of this sensor is you can only get new data from it once every 2 seconds.

Fig 3.3.4: Communication protocol

4. RESEARCH METHODOLOGY

The system is designed to monitor the environmental status in which the controller boards are installed and current consumed by their drivers. Every parameter is associated with certain values up to which the parameter value can be accepted. Proposed system continuously monitors and compares the sensor values obtained and perform the necessary action to prevent the drastic outcome. The measured sensor values are stored in an excel file for future references

Volume: 08 Issue: 01 | Jan 2021

www.irjet.net

Fig.4.1: Block Diagram of Proposed System

The sensors used in the proposed system are shown above using the block diagram. Each sensor acts as an input for the machine board. The red light indicator is used to indicate the error occurred on the machine board controller. Relay trips the circuit when excessive current passes through it.

Fig 4.2 shows the schematic of the proposed system.

The technical details of the system are shown in the schematic diagram. The connections are made in such a way to obtain the satisfactory outcome. All the inputs (sensors that read the values) are connected in Arduino UNO pins. The pins connected with input are pin 12, pin 11, pin 10, pin 9. The current sensor is connected in pins A4, A5. The machine is connected to the Arduino UNO through relay (pin 8). The supplied voltage to the proposed system is 15V and the supplied current is 6A. Each sensor activated by 5V supply voltage.

5. RESULTS AND DISCUSSIONS

A. All paramters are in range

When there is no error all the parameters are within range. If all the parameters are within range then there will be no warning messages.

ARAMETRE LIMIT SET	WARNING MESSAGES	MEASURE PARAMETRE VALUES
CURRENT LIMIT (mA)	CURRENT CONSUMPTION STATUS	RELATIVE HUMIDITY (%)
500	NORMAL	83 TEMPERATURE (*C)
HUMIDITY LIMIT(%)	TEMPERATURE STATUS	28.6
A 85	NORMAL	CURRENT (mA)
TEMPERATURE (*C)	HUMIDIDTY STATUS	249
32	NORMAL	SMOKE SENSOR
	SMOKE SENSOR STATUS	0
Serial Port	NO DETECTION	PROXIMITY SENSOR
COM22	PROXIMITY STATUS	11
stop	BOARD DETECTED	LDR
STOP	LDR STATUS	Ju
	NO DETECTION	MACHINE STATUS

(b) Labview parameters

(c) IOT web page reading

B. Over current

When excessive current consumed by the machine then the warning message "Over current consumption" will be generated then the machine turned off.

Figure 5.2 Overcurrent (a) LCD readings

PARAMETRE LIMIT SET	WARNING MESSAGES	MEASURE PARAMETRE VALUE
CURRENT LIMIT (mA)	CURRENT CONSUMPTION STATUS	RELATIVE HUMIDITY (%)
500	OVER CURRENT CONSUMPTION	83 TEMPERATURE (%C)
HUMIDITY LIMIT(%)	TEMPERATURE STATUS	28.6
A 85	NORMAL	CURRENT (mA)
TEMPERATURE (°C)	HUMIDIDTY STATUS	502
32	NORMAL	SMOKE SENSOR
	SMOKE SENSOR STATUS	0
Serial Port	NO DETECTION	PROXIMITY SENSOR
COM22	PROXIMITY STATUS	1
stop	BOARD DETECTED	LUK 0
STOP	LDR STATUS	<u>)•</u>
	NO DETECTION	MACHINE STATUS

(b) Warning due to overcurrent Labview parameters

Title of Web Page

Text that is going to be displayed before the VI panel image.

read buffer number 1148528	7111		P	ARAMETRE LIMI	IT SE	т	WARNING MESS	AGES	MEASUR	E PARAM	IETRE VALUES	5
				CURRENT (m)	A)	CURR	ENT CONSUMPTION STATUS		RELAT	VEHUMDITY	(%)	
Command				1100		OVER	CURRENT CONSUMPTION		8/ TEMPS	RATURE (°C)		
Command]			HUMDITYL	IMT(3) TEMP	RATURE STATUS		52	T İ		
"CN?						TEM	ERATURE LEVEL EXCEEDS		CURRE	(T (mA)		
n				TEMPERATU	RE (°C) HUM	DIDTY STATUS		1148	Í.		
				÷0		HUM	DITY LEVEL EXCEEDS		SMOKE	SENSOR		REL
VISA resource name		Read Count				SMOK	E SENSOR STATUS		1			
Jenn D		8100				SMO	Æ DETECTED		PROXIN	ITY SENSOR		
News 1						PROX	MITY STATUS		100			
Serial Settings	XON/XOFF Characters	Write				BOA	ID DETECTED		LUK	r		
baud rate	XON					LDR S	TATUS		1			
9600	÷ DC1	UNCE LIEE				REDI	IGHT DETECTED		MACH	INE STATUS		
deta bits	XOFF								1			
	Ţ DG		[DATA TABLE								
parity			0	DATE/TIME	SND	TEMPERATURE (°C	RELATIVE HUMIDITY (%)	CURRENT (mA)	SMOKE SENSOR	LDR	PROXIMITY #	-
None	End Read on Termination	n Character?	H.	11/30/2020 10:03:55	0.000	0.00000	0.00000	0.000000	0.00000	0.00000	0.00000	d
stop bits				11/30/2020 10:04:06	1.0000	52,00000	87.00000	1148.000000	1.00000	1.00000	1.000000	

(c) Over-current IOT webpage

C. Temperature exceeds

When the temperature level is not in range then the warning message "Temperature level exceeds" will be generated.

LCD? LS-RED LIGHT DETER	CTOR
Current mA:1041 Temp 7-C:45 Hum %:87 SS:0 PS:1 LS:1	
2005 2002 2002 2002 2002 2002 2002 2002	
<u>+ 0 0 4 0 0 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</u>	

Figure 5.3 Temperature exceeds (a) LCD readings

ARAMETRE LIMIT SET	WARNING MESSAGES	MEASURE PARAMETRE VALUES
CURRENT LIMIT (mA)	CURRENT CONSUMPTION STATUS	RELATIVE HUMIDITY (%)
/) 500	NORMAL	71
HUMIDITY LIMIT(%)	TEMPERATURE STATUS	33.7
(185)	TEMPERATURE LEVEL EXCEEDS	CURRENT (mA)
TEMPERATURE (°C)	HUMIDIDTY STATUS	354
7 30	NORMAL	SMOKE SENSOR
	SMOKE SENSOR STATUS	0
Serial Port	NO DETECTION	PROXIMITY SENSOR
COM22	PROXIMITY STATUS	122
stop	BOARD DETECTED	LDR
STOP	LDR STATUS	U
	NO DETECTION	MACHINE STATUS

b) Temperature exceeds

Title of Web Page							
Text that is going to be displayed before the VI panel image.							
							50-
							40-
d buffer number 10414587101	PARAMETRE LIMIT SET	WARNING MESS	AGES	MEASURE	PARAME	TRE VALUES	pitude 30 ·
	CURRENT (mA)	CURRENT CONSUMPTION STATUS		RELATI	E HUMDITY	50	-¥ 20•
Comment	1100	NORMAL		87 TEMPE	RATURE (*C)		10 -
	HUMIDITY LIMIT(%)	TEMPERATURE STATUS		45			0-
-uv:		TEMPERATURE LEVEL EXCEEDS		CURREN	(T (m4)		
	TEMPERATURE (*C)	HUMIDIDTY STATUS		1041			
	÷0	HUMIDITY LEVEL EXCEEDS		SMOKES	ENSOR		RELATIVE H
SA resource name Read Count		SMOKE SENSOR STATUS		0	THEFT		100
COM2 1		NO DETECTION		1	TH SENSOR		80
		PROXIMITY STATUS		108			H 60
Dial Settings XON/XOFF Characters Write		BOARD DETECTED		1	T .		Dit o
baud rate XON		LDR STATUS					Ę 40
÷ 9600 CASE OFF		RED LIGHT DETECTED		MACH	NESTATUS		20
data bits XOFF 🧼							
÷8 DC3	DATA TABLE						0
parity		IEC (PC) DELATING MURAIDITY (PC)	CURRENT (mil)	Character CENICOR	100	DECVINETY [4]	6
End Read on Termination Character?	0 11/30/2020 9-49-10-4 0.0000 0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	CURRENT
	11/30/2020 9-49:19 / 1.0000 45.000000	87.00000	1041.000000	0.000000	1.000000	1.000000	120
stop bits	11/30/2020 9:49:21 / 2.0000 45:000000	87.000000	1041.000000	0.000000	1.000000	1.000000	120

(c) IOT web page parameters

D. Humidity level exceeds

The warning message "Humidity level exceeds" will be generated when the humidity level exceeds the specified range.

International Research Journal of Engineering and Technology (IRJET) e-

Volume: 08 Issue: 01 | Jan 2021

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

PS -PROXIMITY SENSOR	PARAMETRE LIMIT SET	WARNING MESSAGES	MEASURE PARAMETRE VALUES
LCD? LS-RED LIGHT DETECTOR	CURRENT LIMIT (mA)	CURRENT CONSUMPTION STATUS NORMAL TEMPERATURE STATUS	RELATIVE HUMIDITY (%) 82 TEMPERATURE (°C) 92 7
Current mA:1148 Temp V-C:52	TEMPERATURE (*C)	NORMAL HUMIDIDTY STATUS NORMAL SMOKE SENSOR STATUS	CURRENT (mA) 320 SMOKE SENSOR 0
Hum 7:87 SS:1 PS:1 LS:1	stop	SMOKE DETECTED PROXIMITY STATUS BOARD DETECTED LDR STATUS	1 LDR 0
		NO DETECTION	MACHINE STATUS

Fig 5.4: Humidity exceeds (a) LCD readings

E. Board not detected

When the board is not connected then thewarning message "Board not placed" will be generated.

PARAMETRE LIMIT SET	WARNING MESSAGES	MEASURE PARAMETRE VALUE
CURRENT LIMIT (mA)	CURRENT CONSUMPTION STATUS	RELATIVE HUMIDITY (%)
500	NORMAL	81 TEMPERATURE (CO)
HUMIDITY LIMIT(%)	TEMPERATURE STATUS	28.8
85	NORMAL	CURRENT (mA)
TEMPERATURE (°C)	HUMIDIDTY STATUS	231
32	NORMAL	SMOKE SENSOR
	SMOKE SENSOR STATUS	0
Serial Port	NO DETECTION	PROXIMITY SENSOR
COM22	PROXIMITY STATUS	10
stop	BOARD NOT PLACED	LDR
STOP	LDR STATUS	10
	NO DETECTION	MACHINE STATUS
		0

Fig.5.5 Warning message when board not connected

F. Red light detected

When the error exist in the machine controller board function then the warning message "Red light detected" will be generated.

PARAMETRE LIMIT SET	WARNING MESSAGES	MEASURE PARAMETRE VALUES
CURRENT LIMIT (mA)	CURRENT CONSUMPTION STATUS	RELATIVE HUMIDITY (%)
500	NORMAL	82 TEMPERATURE (*C)
HUMIDITY UMIT(%)	TEMPERATURE STATUS	28.7
2185	NORMAL	CURRENT (mA)
TEMPERATURE (°C)	HUMIDIDTY STATUS	307
32	NORMAL	SMOKE SENSOR
	SMOKE SENSOR STATUS	0
Serial Port	NO DETECTION	PROXIMITY SENSOR
COM22	PROXIMITY STATUS	1
stop	BOARD DETECTED	LDR
STOP	LDR STATUS	,*
	RED LIGHT DETECTED	MACHINE STATUS
		0

Fig.5.6: Warning message due to error in function

G. Smoke detected

The warning message "Smoke detected" is created when the smoke is detected by the sensor.

Fig.5.7: Warning message due to smoke

H. Data table

Data table shows the measured parameter value with time stamp. The measured sensor values are stored in the data table is shown below.

m	DATE/TIME	S NO	TEMPERATURE (°C)	RELATIVE HUMIDITY (%)	CURRENT (mA)	SMOKE SENSOR	LDR	PROXIMITY
#		01110	TENT ENVIONE (C)		connert (may	SINOKE SENSOR		TROAMITT
	11/30/2020 10:19:45	20.000	15.000000	40.000000	723.000000	0.000000	1.000000	1.000000
	11/30/2020 10:19:47	21.000	15.000000	40.000000	723.000000	0.000000	1.000000	1.000000
Π	11/30/2020 10:19:50	22.000	15.000000	40.000000	723.00000	0.000000	1.000000	1.000000
I	11/30/2020 10:19:52	23.000	15.000000	40.000000	723.00000	0.000000	1.000000	1.000000
I	11/30/2020 10:19:54	24.000	15.000000	40.000000	723.00000	0.000000	1.000000	1.000000
I	11/30/2020 10:20:04	25.000	15.000000	41.000000	723.00000	0.000000	1.000000	1.000000
I	11/30/2020 10:20:07	26.000	15.000000	40.000000	723.00000	0.000000	1.000000	1.000000
I	11/30/2020 10:20:09	27.000	15.000000	40.000000	723.00000	0.000000	1.000000	1.000000
I	11/30/2020 10:20:11	28.000	15.000000	40.000000	723.00000	0.000000	1.000000	1.000000
IT	11/30/2020 10:20:14	29.000	15.000000	40.000000	723.000000	0.000000	1.000000	1.000000

I. Graph

When the error exist in the machine controller board The graph is plotted using measured value versus time.

Fig.5.9: Measured parameters versus time plot

6. CONCLUSIONS

Finally the systems intended function is completely designed and simulated using LabVIEW tool. System designed here is tested for various conditions, by varying the parameters using sensors. Each function of the design is tested for wide range of inputs. Result obtained for the various test cases are analyzed and verified. Parameter values obtained are stored and plotted in graph. Every parameter will be continuously measured and necessary action will be taken based on the condition. Whenever the measured values increase over the set limit corresponding warning message is generated with the power trip based on the requirement. The measured values are continuously plotted graphically (measured value versus time) and stored as excel file in PC.

In future, the values measured and then the warning messages will be sent to the user via email. The measured values can be viewed through the Android dashboard and also the Protocol can be updated depends the application and requirement.

References

- 1) ps://wikimili.com/en/Flux (metallurgy)
- 2) Liehr, S.; Lenke, P.; Krebber, K.; Seeger, M.; Thiele, E.; Metschies, H.; Gebreselassie, B.; Münich, J.C.; Stempniewski, L. " Distributed strain measurement with polymer optical fibers integrated into multifunctionalgeotextiles". In Proceedings of the Optical Sensors, Strasbourg, France, 7–10 April 2008.
- 3) Wang, L.; Xu, S.; Qiu, J. "Automatic monitoring system in underground engineering construction: Review and prospect". Adv. Civil Eng. (in press).
- Artières, O.; Dortland, G. "A fiber optics textile composite sensor for geotechnical applications. In Proceedingsof the Fourth European" Workshop on Optical Fibre Sensors, Porto, Portugal, 8–10 September 2010; p. 765331.
- 5) Lu, L.; Wang, Z.J.; Feng, H.; Arai, K. "Analysis of Long-term Deformation of Reinforced Retaining Wall using Optical Fiber Sensor Geotextile" Appl. Mech. Mater. 2014, 580–583, 338–343. doi: 10.4028/www.scientific.net/amm.580-583.338
- 6) Lin, C.; Zhang, X.; Han, J. "Comprehensive Material Characterizations of Pavement Structure Installed withWicking Fabrics". J. Mater. Civ. Eng. **2019**, 31, 04018372.
- 7) Meng Miao, Yuanzhong Zhou, Javier A. Salcedo, Jean-Jacques Hajjar, and Juin J. Liou. "A New Method to Estimate Failure Temperatures of Semiconductor Devices under Electrostatic Discharge Stresses": IEEE Electron Device Letters, 2018

- H. Conseil-Gudla, Z. Staliulionis, M. S. Jellesen, M. Jabbari, J. H. Hattel, and R. Ambat. "Humidity Buildup in Electronic Enclosures Exposed to Constant Conditions": IEEE transactions on components, packaging and manufacturing technology, 2018
- 9) G. Alonso Orcajo, Josue Rodriguez D., Jose M. Cano, Joaquin G. Nomiella Pablo Ardura G., RocioLlera T., Diego CifrifulR. "Overcurrent Protection Response of a Hot Rolling Mill Filtering System: Analysis of the Process Conditions"2017
- 10) Yuanzhong Zhou, Meng Miao, Javier A. Salcedo, Jean-Jacques Hajjar, and Juin J. Liou. "Compact Thermal Failure Model for Devices Subject to Electrostatic Discharge Stresses": IEEE transactions on electron devices, vol. 62, no. 12, december 2015,
- 11) M. Saravanan et al "Smart Data Monitoring System for Power Loom Using IOT " International Journal of Pure and Applied Mathematics Volume 119 No. 10 2018, 937-947
- 12) Alonso Orcajo, Josué Rodríguez D., Pablo Ardura G., José M. Cano, Member, IEEE, Joaquín G. Norniella, RocíoLlera T., Diego Cifrián R."Dynamic Estimation of Electrical Demand in Hot Rolling Mills": IEEE Transactions on industry Applications vol. 52, May/June 2016.G.
- 13) Deyi Dong, Zhenquan Shi, "The Loom monitoring system design with high reliability and easy maintainability" International conference on Control, Automation and System Engineering (2011).
- 14) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC628 1231
- 15) A. B. Nassif, W. Xu, "Passive Harmonic Filters for Medium-Voltage Industrial Systems: Practical Considerations and Topology Analysis," 39th North American Power Symposium NAPS 2007, Sept. 2007 pp. 30i- 307, Las Cruces NM.
- 16) A. K. Chattopadhyay, "Alternating Current Drives in the Steel Industry, Advancements in the last 30 years," industrial Electronics Magazine, vol 4, pp. 30-42, December 2010.
- 17) Aravena P., Moran 1. Dixon 1., Espinoza J., Godoy O. -"A New Hibrid Filter topology for Sub and Interharmonic attenuation in Cycloconverter-Fed Drives Applications" . iEEE industry Applications Society Annual Meeting 2009, 4-8 Oct 2009, Houston, Texas.
- 18) B. Badrzadeh, K. S. Smith, R. C. Wilson "Designing Passive Harmonic Filters for an Aluminum Smelting Plant" IEEE Trans. on Industry Applications, vol. 47, no. 2, March/April 2011.

- 19) B. R. Pelly, "Thyristor Phase-Controlled Converters and Cycloconverters", Hoboken, NJ, USA: Wiley-Interscience, 1971.
- 20) Barlow, R. E. and Proschan, F., "Mathematical: Theory of Reliability", Philadelphia: SIAM, 1996. 258 p.
- 21) Jingfeng Shao, Zhanyi Zhao, Liping Yang, Peng Song, "Remote Monitoring and Control System Oriented to the Textile Enterprise", IEEE Second International Symposium on Knowledge Acquisition and Modeling (2009).
- 22) Kim S., Lee J.S., "Development of a versatile Controller System for textile machinery" Fibers and Polymers 12(4) (2011).
- 23) Li R., Liu C., Luo F., A design for automotive CAN bus monitoring system, Vehicle Power and Propulsion Conference (2008), 1-5.
- 24) Gurusamy Pandian P.G., Sarvanasankar S., Ramasamy S.N., "Prevention of Fire Hazards and Control in South Indian Power Loom Industries using SHAPA Sensors" International Research Journal of Engineering and Technology 02(08) (2015).
- 25) Prasanna Kumar E., Karuppusamy P., Santhosh Kumar D., Sowndharsekar C., Venugopal S., "Intelligent monitoring system for production management in powerloom", IJAREEIE 6(3) (2017).
- 26) Shao J.F., Qin L.S., "Design of loom monitoring and management system based on C/S model", Journal of Textile Research 7 (2006).
- 27) Brandi E., Abboud R., Calero F. "Protecting Harmonic Filters in a 600 kV HYDC Installation", 42nd Annual Western Protective Relay Conjerence. Spokane, Washington. October 20-22, 2013.