Analysis and Design of Primary School building

A.V. Deepanchakaravarthi ${ }^{1}$, S. Nivetha ${ }^{2}$, S. Rajalakshmi ${ }^{3}$
${ }^{1}$ Assistant professor, Civil Department, velammal college of Engineering and Technology, Madurai, Tamilnadu, India.
2,3Bachelor of Engineering Student, velammal college of Engineering and Technology, Madurai, Tamilnadu, India

Abstract

Our project is to design a primary school building that can hold a total strength of 500 students, with proper infrastructure provided. Our project is designed to be located at Othakadai village, at the foot hills of anaimalai. This primary school building is designed to benefit the children dwelling in and around Othakdai. The total area of the school building is 6000 sq.meter. It comprises a class rooms, hygienic restrooms for both male and female, lobby, parent's lounge, library, staff room, indoor play area, art room, interactive digital learning room and office room, principal's room, splash area. The design thus obtained is analyzed using STAAD Pro, an analysis software, to check for the shear, bending and tensile conditions .Slab designing is done depending upon the type of slab, end conditions and the loading. From the slabs the loads are transferred to the beams, thereafter the loads from the beams are taken up by the columns and then to footing.

I. INTRODUCTION

My project involves analysis and design of PRIMARY SCHOOL BUILDING using very popular designing software STAAD Pro v8i. The total area of the building is 6000 m 2 .The detailed assessment of the primary school building needs and associated capital and operational funding requirements for primary school facility to service. It takes into account the following principles of planning:

The management of play school building, in particular new effective

Management options and their implications, financial modeling and forecasting, and usage/occupancy patterns.

Recommended size and priority components of play school building facility. They relate to financial and other operating outcomes (e.g. social, environmental).

Design and layout of recommended facilities to optimize management and operational benefits.

Integration of building design and location on a major recreation reserve.

Making arrangement: Making arrangements in an industrial chocolate making Layout will be identified as "multiple-aisle". These terms are commonly found in design standards manuals, building codes, and similar architectural reference documents. Each size is unique,
with specific guidelines governing various size various spacing, and exit way.

II. LITERATURE REVIEW

1. DINESH RANJAN.S,AISHWARYALAKSHMI.V "Design and Analysis of an Institutional Building" Volume 1,Issue 2, M ar 2017.The aim of the project is to analyze and design of an institutional building. A lay out plan of the proposed building is drawn by using AUTO CADD 2010.Using this so many standard books analysis of bending moment, shear force, deflection, end moments and foundation reactions are calculated. The structure was analyzed using STAAD.ProV8i.The method we are design the entire structure is limit state Method. The R.C.C.detailing in general shall be as per SP 34 and as per ductile detailing codeI.S. 13920.1993. The design was carried as per IS 456:2000 for the above load combinations. As a result, the training, taken through a period of one month allowed to have sample exposure to various field practices in the analysis and design of multistoreyed buildings and also in various construction techniques used in the school.
2. Natasha Khalil on design and analysis of a building. The aim of the project is to analyze and design of an institutional building. A lay out plan of the proposed building is drawn by using AUTO CADD 2010.Using this so many standard books analysis of bending moment, shear force, deflection, end moments and foundation reactions are calculated. The structure wasanalyzed using STAAD.ProV8i. The method we are design the entire structure is limit state Method. The R.C.C. detailing in general shall be as per SP 34 and as per ductile detailing code I.S. 13920.1993. The design was carried as per IS 456:2000 for the above load combinations. As a result, the training, taken through a period of one month allowed to have sample exposure to various field practices in the analysis and design of multistoried buildings and also in various construction techniques used in the school.
3. Arjunsahu, AnuragVerma, Aryanpaul "Design and analysis of framed structure .There are several methods for analysis of different frames like cantilever method, portal method, and Matrix method. The present project deals with the design \& analysis of an institutional building. The dead load\&live loads are applied and the design for beams, columns, footing is obtained STAAD Pro
with its new features surpassed its predecessors and compotators with its data sharing capabilities with other major software like AUTOCAD.

III. WORK PROGRESS

3.1 BASIC DATA

Type of construction: Concrete structure
No of stories: 2
Types of walls: brick wall
Floor to floor height: 3m
Walls: 230 mm thick brick masonry walls for both external and internal wall

Materials: Concrete grade:
M20 Steel grades:
HYSD bars of Fe415 grade.
Bearing capacity of soil: $450 \mathrm{kN} / \mathrm{m} 2$
Details of play school building:
Total area of the building $=6000 \mathrm{sq} \mathrm{m}$
Class Room Size 40 m2
Office Room 50 m 2
Parents longue 50 m 2
Canteen 40 m2
Library 150 m2
Computer Lab 100 m2
Craft Room 100 m2
Medical Inspection Room 25 m2
PET Room 50 m2
Toilet 225 m2
Art Room 100 m2
Music Room 100 m2
Parking Area 650 m2

3.2 PLAN OF THE BUILDING

Ground floor plan

First Floor Plan

IV. DESIGN OF BUILDING COMPONENTS

4.1 DESIGN OF SLAB

Data

Concrete grade (fck) $=25 \mathrm{~N} / \mathrm{mm} 2$
Grade of steel (fy) $=415 \mathrm{~N} / \mathrm{mm} 2$
Unit weight of concrete $=25 \mathrm{~N} / \mathrm{mm} 2$
Edge condition = Two Short Edges Discontinuous
Assume
Dia of rod used $=10 \mathrm{~mm}$
Clear cover $=20 \mathrm{~mm}$ (as per IS 456:2000 table: 16)
Type of Slab
Short span Lx $=5 \mathrm{~m}$
Longer span Ly $=8 \mathrm{~m}$
Lx/ Ly =8/5
$=1.6 \leq 2$
It is two way slab
Depth of Slab
Span/overall depth $=40 \times 0.8$
5230/D = 40 X 0.8
$\mathrm{D}=156.44 \mathrm{~mm}$
$=165 \mathrm{~mm}$
Effective depth $=$ D -c.c $-\Phi / 2$
= 165-20-10/2
$\mathrm{d}=140 \mathrm{~mm}$
Effective Span
Effective span = clear span + effective depth
$=5+0.14$
$=5.14 \mathrm{~mm}$
Calculation of Load
Self weight $=\mathrm{b} \times \mathrm{D} \times$ unit weight of concrete
$=1 \times 0.165 \times 25$
$=4.125 \mathrm{Kn} / \mathrm{m} 2$
Live load $=3 \mathrm{Kn} / \mathrm{m} 2$
Floor finish $=1 \mathrm{Kn} / \mathrm{m} 2$
Total load $=8.125 \mathrm{Kn} / \mathrm{m} 2$
Design load $=1.5 \times 8.125$
$\mathrm{w}=12.188 \mathrm{Kn} / \mathrm{m} 2$
Ultimate Design Moment and Shear Forces
As per table 26 in IS 456:2000,
$\mathrm{Mx}=\alpha \mathrm{x} \mathrm{wlx}$
$\mathrm{My}=\alpha \mathrm{y} w \mathrm{ly}$
From the boundary conditions panel type is considered and the negative
and positive moment are calculated by using above formula.
Ly/Lx = 1
Type of panel is two adjacent edges discontinuous
Negative moment at continuous edge
$\alpha x=0.063$
$\alpha y=0$
Positive moment at mid span
$\alpha \mathrm{x}=0.047$
$\alpha y=0.035$
Positive Moment
$\mathrm{Mx}=\alpha \mathrm{x} \mathrm{wlx}$
$=0.047 \times 12.18 \times 5.142$
$=15.12 \mathrm{kNm}$
$\mathrm{My}=\alpha \mathrm{y} w \mathrm{ly}$
$=0.035 \times 12.18 \times 5.142$
$=11.26 \mathrm{kNm}$
Negative Moment
$\mathrm{Mx}=\alpha \mathrm{x} \mathrm{wlx}$
$=0.047$ X 12.18 X5.142
$=20.27 \mathrm{kNm}$
$\mathrm{My}=\alpha \mathrm{y} w \mathrm{ly}$
$=0.0$ X 12.18 X5.142
$=0 \mathrm{kNm}$
Shear force
$\mathrm{Vu}=0.5 \mathrm{wuLx}$
$=0.5 \times 12.18 \times 5.14$
$=31.85 \mathrm{Kn}$
Check for Depth
Mu limit $=0.138 \mathrm{fckbd} 2$
$=15.13 \times 106$
$=0.138 \times 25 \times 1000 \times \mathrm{d} 2$
$=\sqrt{ }(14.689 \times 106$
/ (0.138 x $25 \times 1000))$
$=66.22 \mathrm{~mm}<140 \mathrm{~mm}$
Provide a depth of $110 \mathrm{~mm}<140 \mathrm{~mm}$
$\mathrm{d}=110 \mathrm{~mm} ; \mathrm{D}=135 \mathrm{~mm}$
Hence the effective depth selected is sufficient to resist the design ultimate moment.

Reinforcement

From IS 456:2000
Mu = 0.87fyAstd (1- Astfy/bdfck)
$15.12 \times 106=0.87 \times 415 \times$ Astx $110 \times(1-$ Ast x 415/1000
x 110×25)
15.13×106
= 39715.5 Ast - 7.49 Ast
(1-Astfy/bdfck)
$11.26 \times 106=0.87 \times 415 \times$ Astx $110 \times$ (1-Ast x
$415 / 1000 \times 110 \times 25)$
11.27×106
= 39715.5 Ast - 7.49 Ast2
Ast $=300.5 \mathrm{~mm} 2$
Minimum reinforcement $=0.12 \% B d$ (as per 26.5.2.1)
$=0.12 / 100 \times 1000 \times 135$
$=162 \mathrm{~mm} 2$
Adopt 10 mm diameter bars,
Spacing $=(\pi / 4 \times 102$
/412) X 1000
$=190 \mathrm{~mm}$
Provide,
10 mm bars at 190 mm center's (Ast= 341.484 mm 2) in short span direction.
10 mm bars at 260 mm center's (Ast= 246.87 mm 2) in longer spandirection.

sCHECK FOR SHEAR

Considering the short span and unit width of slab.
$\mathrm{Tv}=\mathrm{Vu} / \mathrm{bd}$ (as per clause 40.1 page no.72)
$=31.32 \times 103$
/1000x110
$=0.285 \mathrm{~N} / \mathrm{mm} 2$
$\mathrm{Pt}=100 \mathrm{Ast} / \mathrm{bd}$
$=100 \times 412 / 1000 \times 110$
$=0.3$
Refer table 19 in IS 456:2000 for $\mathrm{pt}=0.31$
$=0.384$
From IS 456:200 clause 40.2.1.1
Tck $=1.30 \times 0.384$
$=0.499>0.296$
KTc>Tv
Hence the shear stresses are with in safe permissible limits.

Check for Deflection Control

Considering unit width of slab
(L/d) basic = 26
$(\mathrm{L} / \mathrm{d}) \max =(\mathrm{L} / \mathrm{d})$ basic xkt
$\mathrm{fs}=0.58 \mathrm{fyAst}(\mathrm{req}) /$ Astprov
$=231.70$
From SP16 table 3 page no: 49
$\mathrm{pt}=0.3 \%$
As per IS 456:2000 pg. 38 fig 4
$\mathrm{Kt}=1.5$
From fig 4 IS 456:2000 page no: $38, \mathrm{Kt}=1.5$
$(\mathrm{L} / \mathrm{d}) \max =(\mathrm{L} / \mathrm{d})$ basic $\times \mathrm{Kt}$
$=40 \times 1.5=60$
$(\mathrm{L} / \mathrm{d})$ actual $=5140 / 110=46.82<60$
Hence the limit state of deflection is satisfied

Slab Reinforcement

4.2 DESIGN OF BEAM

Size of beam $=250 \times 450 \mathrm{~mm}$
Span(effective) $=5.23 \mathrm{~m}$
L. $\mathrm{L}=3 \mathrm{KN} / \mathrm{m}$
D.L $=2.82+4.375=7.195 \mathrm{KN} / \mathrm{m}$

DIMENSION:
Cover depth d' $=50 \mathrm{~mm}$
Effective depth $=\mathrm{d}=\mathrm{D}-\mathrm{d}^{\prime}$
$=450-50=400 \mathrm{~mm}$

MOMENT CALCULATION:

$\mathrm{Mu}(-\mathrm{ve})=1.5((\mathrm{Wd} \mathrm{l2} / 10)+(\mathrm{Wd} \mathrm{l2} / 9))$
$=1.5((7.195 \times 52 / 9)+(3 \times 52 / 10))$
$=45.09 \mathrm{KNm}$
$\mathrm{Mu}(-\mathrm{ve})=1.5((\mathrm{Wd} 12 / 12)+(\mathrm{Wd} \mathrm{l} 2 / 10))$
$=1.5((7.195 \times 52 / 10)+(3 \times 52 / 12))$
$=39.78 \mathrm{KNm}$
$\mathrm{Mu} \lim =0.138 \mathrm{fck} \mathrm{b} \mathrm{d} 2$
$=0.138 \mathrm{x} 20 \mathrm{x} 250 \mathrm{x} 4002$
$=110 \mathrm{KNm}$
$\mathrm{Mu}<\mathrm{Mu} \lim$

Main Reinforcement:

$\mathrm{Mu}=0.87 \mathrm{x}$ fy x Ast $\mathrm{x} \mathrm{d}(1$-(Astfy $/$ bdfck) $)$
45.09×106

```
= 144420Ast(1-2.075\times10-4Ast)
45.09 x106
= 144420Ast - 29.96Ast2
Ast = 335 mm2
No of bars required = 335 x 4/ 3.14 x 162
=2
Provide 2 nos of 16 mm dia bar
Ast(prov) = 402.12 mm2
Minimum Reinforcement:
As per IS 456:2000 Cl.no 26.5.1.1\
Ast min = 0.85/fy x b x d
= 0.85/415 x 230 x 400
= 188 mm2
<Astprov
Hence Safe
Adopt 8 mm dia vertical stirrups @ 300 mm c/c spacing.
```


Beam Reinforcement

4.3 DESIGN OF COLUMN

Column (Column under Axial Compression)
DATA
Size of column $=250 \mathrm{~mm} \times 250 \mathrm{~mm}$
Length of column, $\mathrm{L}=3 \mathrm{~m}$
Eff. Length, Leff $=0.65 \times 3$ (as per IS 456:2000 table 28)

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 08 Issue: 01 | Jan 2021
www.irjet.net
$=1.95 \mathrm{~m}$

Grade of concrete fck= $20 \mathrm{~N} / \mathrm{mm} 2$
Grade of steel fy $=415 \mathrm{~N} / \mathrm{mm} 2$
Diameter of rod used $=12 \mathrm{~mm}$
Clear cover $=40 \mathrm{~mm}$

Effective cover d' $=50 \mathrm{~mm}$
Type of column
Leff/d = 1950/250=7.8
Leff/D = 1950/250= 7.8 (as per IS 456:2000 clause 25.1.2)

Since Leff/d and Leff/D are less than 12. It is a short column.

Data taken from STAAD Pro analysis,
$\mathrm{Fy}=294.28 \mathrm{Kn}$
Longitudinal Reinforcement
Axial load, $\mathrm{Pu}=294.28 \mathrm{kN}$
$\mathrm{Pu}=0.4 \mathrm{fckng}+(0.67 \mathrm{fy}-0.4 \mathrm{fck}) \mathrm{ASC}$
$294.28 \times 103=0.4 \times 20 \times(250 \times 250)+(0.67 \times 415-0.4$ X 20)ASC
$294.28 \times 103=500000+(278.05-8)$ ASC
ASC $=761.9 \mathrm{~mm} 2$
No. of bars $=761.9 /(\pi / 4 \times 122$
)
$=6.7=8 \mathrm{bars}$

Lateral Ties

As per IS 456:2000 clause 26.5.3.1 (c)
Pitch
200 mm
[7 $16 \times 12=192 \mathrm{~mm}$
T3 300 mm

Provide spacing of 300 mm .
Tie Diameter
[$1 / 4 \times 12=3 \mathrm{~mm}$
(3) Not less than 6 mm

Provide 8 mm ties.
Column (Column under Uni Axial Compression)
Size of column $=250 \mathrm{~mm} \times 250 \mathrm{~mm}$
Length of column, L=3 m
Eff. Length, Leff $=0.65 \times 3$ (as per table 28, IS 456:2000) $=$ 1.95 m

Grade of concrete fck= $20 \mathrm{~N} / \mathrm{mm} 2$
Grade of steel fy $=415 \mathrm{~N} / \mathrm{mm} 2$
Diameter of rod used $=12 \mathrm{~mm}$
$\mathrm{Pu}=294.28 \mathrm{kN}$
$\mathrm{Mu}=10.2 \mathrm{kNm}$
Type of column
Leff/d = 1950/250 = 7.8
Leff/ d = 1950/250 = 7.8 (refer clause 25.1.2, IS 456:2000)

42
Since Leff/d and Leff/D are less than 12. It is a short column.

Data taken from STAAD Pro analysis,
Fy $=294.28 \mathrm{kN}$
Non Dimensional Parameters
$\mathrm{Pu} /$ fckbd $=294.28 \times 103$
/ (20 x 2502)
$=0.24$
Mu/fckbd2
$=6.7 \mathrm{x} 106$
$/(20 \times 2503)=0.03$
Longitudinal Reinforcement
Refer chart 34 of SP:16 (d'/D = 0.2 and fy $=415 \mathrm{~N} / \mathrm{mm} 2)$
$\mathrm{P} /$ fck $=0.18$
$\mathrm{P}=0.18 \times 20$
$=3.6$
$\mathrm{Asc}=\mathrm{pbD} / 100$
$=(3.6 \times 2502$
)/100
$=2250 \mathrm{~mm} 2$
No. of bars $=2250 /(\pi / 4 \times 122)$
$=19.89$
$=19$ bars

Lateral Ties

Tie diameter
(i) $1 / 4 \times 12=3 \mathrm{~mm}$
(ii) Not less than 6 mm

Provide two legged 8 mm ties.
Pitch
(i) 300 mm
(ii) $16 \times 12=192 \mathrm{~mm}$
(iii) 300 mm

Provide spacing of 300 mm
Column (Column under Biaxial Compression)
Size of column $=250 \mathrm{~mm} \times 250 \mathrm{~mm}$
Length of column, $\mathrm{L}=3 \mathrm{~m}$
Eff. Length Leff $=0.65 \times 3$
$=1.95 \mathrm{~m}$ (As per table 28, IS 456:2000)
Grade of concrete fck= $20 \mathrm{~N} / \mathrm{mm} 2$
Grade of steel fy $=415 \mathrm{~N} / \mathrm{mm} 2$
Diameter of rod used $=12 \mathrm{~mm}$
Clear cover $=40 \mathrm{~mm}$
Effective cover d' $=50 \mathrm{~mm}$
Type of Column
Leff/d $=1950 / 250=6.5$
Leff/D $=1950 / 250$ (As per clause 25.1.2, IS 456:2000)= 3.9

Since Leff/d and Leff/D are less than 12. It is a short column.

Data taken from STAAD pro analysis,
$\mathrm{Fy}=294.28 \mathrm{kN}$
Design of Compression Member Subjected To Biaxial Bending

Axial load $\mathrm{Pu}=294.28 \mathrm{KN}$
Moment Mz= 6.37 kNm
Moment $\mathrm{My}=3.28 \mathrm{kNm}$
Assume $\mathrm{Pu}=4 \%$
$\mathrm{Pt} / \mathrm{fck}=4 / 20=0.2$
Uniaxial moment capacity of the section about XX axis
$d^{\prime}=40+20 / 2=50$
$\mathrm{D}=250 \mathrm{~mm}$
$d^{\prime} / D=50 / 250=0.2$
$\mathrm{Pu} / \mathrm{fckb}=(294.28 \times 103) /(20 \times 2502)$
$=0.23$
Referring chart No. 44,
$\mathrm{Mu} / \mathrm{fckbD} 2$
$=0.03$
Uniaxial moment capacity of the section about X -X axis
Mux1 $=0.03$ X 20 X 250×2502
$=9.375 \mathrm{kNm}$
Uniaxial moment capacity of the section about Y-Y axis
$\mathrm{d}^{\prime} / \mathrm{D}=50 / 250=0.175$
Chart for $\mathrm{d}^{\prime} / \mathrm{D}=0.018$ will be used
Referring chart,
Mu/fckbd2
$=0.018$
Muy1 $=0.018 \times 20 \times 250 \times 2502$
$=5.625 \mathrm{kNm}$
Calculation of Puz
From chart 63 corresponding to,
$\mathrm{Pt}=4 \%$

International Research Journal of Engineering and Technology (IRJET)
$\mathrm{fy}=415 \mathrm{~N} / \mathrm{mm} 2$
fck $=20 \mathrm{~N} / \mathrm{mm} 2$
Puz $/ \mathrm{Ag}=24 \mathrm{~N} / \mathrm{mm} 2$
Puz $=24 \times 250 \times 250$
$\mathrm{Puz}=1500 \mathrm{kN}$
$\mathrm{Pu} / \mathrm{Pux}=294.28 / 1500=0.196$
Mux/Mux1 $=6.37 / 9.375=0.68$
Muy/ Muy1 $=3.28 / 5.625$
$=0.58$
Referring to chart 64, the permissible value of Mux/Mux1 corresponding to the above
values of Muy/Muy1 and $\mathrm{Pu} / \mathrm{Pux}$ is equal to 1
Corresponding to the above values of Muy/Muy1 and Pu/Pux, the permissible value of Mux/Mux1 is 1 .Hence the section is O.K.

As $=(\mathrm{pxbxD}) / 100$
$=(4 \times 250 \times 250) / 100$
$=2500 \mathrm{~mm} 2$
Use 12 mm dia bars,
No. of bars required $=$ Ast/area of 1 bar
$=2500 /((\pi / 4) \times 122)$
$=18$
The diameter,
(i) $1 / 4 \times 12=3 \mathrm{~mm}$
(ii) Not less than 6 mm

Provide two legged 8 mm ties.
Pitch
(i) 300 mm
(ii) $16 \times 12=192 \mathrm{~mm}$
(iii) 300 mm

Provide spacing of 300 mm .

Column Reinforcement

4.4 DESIGN OF STAIRCASE

Height between floors $=3 \mathrm{~m}$
Tread $=270 \mathrm{~mm}$
Rise $=160 \mathrm{~mm}$
Landing width $=1.25 \mathrm{~m}$
Live load $=3 \mathrm{KN} / \mathrm{m}$
F.F $=1 \mathrm{KN} / \mathrm{m}$

Wall thickness $=250 \mathrm{~mm}$

DIMENSIONS:

$\mathrm{R}=160 \mathrm{~mm}$
$\mathrm{T}=270 \mathrm{~mm}$

No. of steps $=3 / 0.16=18$ steps
In case of dog legged staircase, 9 nos of steps for 1st flight and other 9 nos of steps
for2ndflight.
Effective span $=0.25 / 2+1.25+(8 x 0.27)+1.25+0.25 / 2$
$=4.91 \mathrm{~m}$
Slab thickness $=$ leff $/ 20=4.91 / 20=245 \mathrm{~mm}$
Assume cover $20 \mathrm{~mm} \& 12 \mathrm{~mm}$ dia bars
deff(landing) $=245-20-12 / 2=219 \mathrm{~mm}$

LOAD CALCULATION:

Dead load of slab on slope Ws $=0.245 \times 1 \times 25$
$=6.125 \mathrm{KN} / \mathrm{m}$

Dead load of slab on horizontal span
W = WsSQRT(R2+ T2) / T
$\mathrm{W}=6.125 \operatorname{SQRT}(0.162+0.272) / 0.27=0.70 \mathrm{KN} / \mathrm{m}$
Dead load on one step $=0.5 \times 0.16 \times 0.27 \times 25$
$=0.54 \mathrm{KN} / \mathrm{m}$
Loads of steps per metre length $=0.54 \times 1000 / 220=$ 2KN/m
$\mathrm{F} . \mathrm{F}=1 \mathrm{KN} / \mathrm{m}$
Total load $=9.7 \mathrm{KN} / \mathrm{m}$
L. $\mathrm{L}=3 \mathrm{KN} / \mathrm{m}$

Factored load $=19.05 \mathrm{KN} / \mathrm{m}$

MOMENT CALCULATION:

$\mathrm{M}=0.125 \mathrm{Wl} 2$
$=0.125 \times 19.05 \times 4.912$
$=57.40 \mathrm{KNm}$
CHECK FOR DEPTH:
$\mathrm{d}=((\mathrm{Mu} /(0.138 \mathrm{fck} \mathrm{b})) 1 / 2$
$=144.21<219 \mathrm{~mm}$
Hence Safe

MAIN REINFORCEMENT:

$\mathrm{Mu}=0.87 \mathrm{x}$ fy x Ast x d (1- Astfy / bdfck)
57.40×106
$=0.87 \times 415 \mathrm{x}$ Ast $\mathrm{x} 144.21(1-($ Ast415/1000x147x20))
57.40×106
= 53334.30 Ast - 7.49 Ast
$\mathrm{Mu}=1310 \mathrm{Nmm}$
Provide 12 mm dia @200mm c/c

DISTRIBUTION REINFORCEMENT:

$=0.12 \%$ cross section
$=0.0012 \times 1000 \times 2=294 \mathrm{~mm} 2$
Provide 10 mm dia bars @ 300 mm c/c

Staircase Reinforcement

4.5 DESIGN OF FOOTING

Load on column = 249.28 KN
Extra load at 10% of load due to self wt of soil $=300 \mathrm{KN}$
Therefore total load $\mathrm{P}=549.28 \mathrm{KN}$
Area $=\mathrm{P} / \mathrm{SBC}=549.28 / 450=7.33 \mathrm{~mm} 2$
Area of footing $=7.5 \mathrm{~m} 2$
Upward soil Pressure $=249.28 /(2.75 \times 2.75)=$ $436.36 \mathrm{vKN} / \mathrm{m} 2$

Two Way Shear:
Uniform overall thickness of footing D $=500 \mathrm{~mm}$
Assuming 16 mm dia bars for main steel, effective depth of footing
$\mathrm{d}=500-50-8=452 \mathrm{~mm}$
punching shear occurs at a distance of $\mathrm{d} / 2$ from the face of the column,
where a and are the dimensions of the column
Hence, punching area of footing $=(a+d) 2$
$=(0.25+0.452)=0.702 \mathrm{~m} 2$
Punching shear force $=$ factored load - (factored average pressure x
punching area of footing)
$=4500-(654.54 \times 0.702)$
$=4040 \mathrm{KN}$
Perimeter along the section $=4(a+d)$
$=4(250+452)=2808 \mathrm{~mm}$

International Research Journal of Engineering and Technology (IRJET)

Punching shear force
Nominal shear stress = perimeter x effective thickness
$=4040 \times 103 / 2808 \times 452=3.18 \mathrm{~N} / \mathrm{mm} 2$
Allowable shear stress $=\mathrm{Ks} \times \mathrm{Tc}$
$\mathrm{Tc}=0.25$ SQRT(fck)
$=1.1 \mathrm{~N} / \mathrm{mm} 2$
$K s=0.5+0.25 / 0.25=1.5$
Allowable shear stress $=1.1 \times 1.5=1.65 \mathrm{~N} / \mathrm{mm} 2$
$1.1<1.65 \mathrm{~N} / \mathrm{mm} 2$
Hence assumed thickness of footing is sufficient.

S

Pu max $=436.36 \mathrm{KN}$
$=2750-450 / 2$
$=1150 \mathrm{~mm}$
$\mathrm{Mu}=$ total force x distance from the sectin
$=180 \mathrm{KN} / \mathrm{m} 2$
Mu / bd2
$=\mathrm{Pt}=0.625 \%$ (from sp-16)
Ast $=\operatorname{Ptx} \mathrm{bxd}$
$=0.625 \times 2.75 \times 2.75$
$=1171.1 \mathrm{~mm} 2 / \mathrm{m}$ width

CHECK FOR ONE WAY SHEAR:

$V u=$ total force $x(1-d) \times B$
$=436.36 \times(1.5-0.452) \times 2.75$
$=1259 \mathrm{KN}$

Nominal shear stress $=V u /(B \times d)=1257 /(2.75 \times 2.75)$
$=0.16 \mathrm{~N} / \mathrm{mm} 2$

CHECK FOR DEVELOPMENT LENGTH:

The development length for 16 mm dia bars is given by
$\mathrm{Ld}=47 \times \mathrm{d}=47 \times 16=752 \mathrm{~mm}$
Providing 60 mm side cover, the total length available from the section is
$0.5 \times(1-\mathrm{a})-60$
$=0.5 \times(2750-250)-60$
$=1190>\mathrm{Ld}$

Hence Ok.

Footing Reinforcement
V. ANALYSIS USING STAAD-PRO:

Structural View of the building

3D view of the building

Load Distribution diagram

VI. CONCLUSION

We have learnt the methodology of constructing a high rise building by following all the codal provisions and to know the method of application of specification concepts for the design. We can conclude that there is difference between the theoretical and practical work done. As the scope of understanding will be much more when practical work is done. As we get more knowledge in such a situation where we have great experience doing the practical work. Knowing the loads we have designed the slabs depending upon the ratio of longer to shorter span of panel. In this project we have designed slabs as two way slabs depending upon the end condition, corresponding bending moment. The coefficients have been calculated as per I.S. code methods for corresponding lx/ly ratio. The calculations have been done for loads on beams and columns and designed frame analysis by moment distribution method. Here we have a very low bearing capacity, hard soil and isolated footing done.

REFERENCES

1. Bijaya Nepal1 \& Prof. Dr. Ramkrishna Maharjan(2015), "Effect ofSchool's Physical Facilities on Learning and Outcomes of Students inNepal"Volume 01, Issue 06.
2. Mohsen Ghasemi Ariani,\& Fatemeh Mirdad,(2016)"The Effect ofSchool Design on Student Performance" Vol. 9, No. 1.
3. Georgios Mylonas, Christos Triantafyllis, Dimitrios Amaxilatis, "An Augmented Reality Prototype for supporting IoT-based Educational Activities for Energyefficient School Buildings," Research Unit 1Patras,26504, Greece
4. Anisha Goswami, Dr. Tushar ,Analysis of school building energy consumption in Tianjin, China , 10th International Conference on Applied Energy (ICAE2018), 22-25 August 2018, Hong Kong.
5. Dinesh Ranjan.S, Aishwarya Lakshmi.V(2017) "Design and Analysis of an Institutional Building" Volume 1,Issue 2.
6. Natasha Khalil(2015) on"design and analysis of a school building"Volume 1,Issue 2.
7. Krishna Raju, N. (2004), 'Structural Design and Drawing Reinforced Concrete and Steel', CBS Publisher \& Distributors Pvt.Ltd., New Delhi.
8. Punmia.B.C(1980), 'Reinforced Concrete Structures', Laxmi Publications, New Delhi.
9. IS 456 - 2000, 'Plain and Reinforced Concrete Code of Practice ', Bureau of Indian Standards, New Delhi
10.IS (parts l,lll,lv)- 1987, 'Code of Practice for Design Loads for Building Structures:Part l - Dead Loads; Part ll Imposed Loads; Part lv - SpecialLoads and Load Combinations', Bureau of Indian Standards, New Delhi.
