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Abstract- Assigning family labels to malicious apps is a common practice for grouping together malware with identical 
behavior. However, recent studies show that apps labeled as belonging to the same family do not necessarily behave similarly: 
one app may lack or have extra capabilities compared to others in the same family, and, conversely, two apps labeled as 
belonging to different families may exhibit close behavior. To reveal these inconsistencies, this paper presents Androinet, a 
characterization system for Android malware families based on ensembles of sensitive API calls extracted from aggregated 
call graphs of different families. Our method has several advantages over similar characterization approaches, including a 
greater reduction ratio with respect to original call graphs, robustness against transformation attacks, and flexibility to be ap-
plied at different granularity levels. We experimentally validate our approach and discuss three specific use cases: mobile 
ransomware, SMS Trojans and banking Trojans. This left us with some inter-esting findings. First of all, malicious operations 
in these types of malware are not necessarily exercised by using several sensitive API calls all together. Second, SMS Trojans 
have larger ensembles of API calls compared to the other types. Last but not least, we identified several samples with identical 
ensembles though being labeled as part of different families. 
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1 INTRODUCTION 

Android is the most popular Operating System (OS) worldwide, with a larger market share than Windows PC and Windows 
phone together [1]. Android is a complex system that can integrate third-party software from on-line markets, some of which 
are weakly vetted [2]. This altogether poses several security and privacy concerns. In terms of security, new attack vectors are 
discovered at an unprecedented rate [3], while, in terms of privacy, apps have access to a wide range of information they often 
collect in bulk [4]. Some Android apps also impact the integrity of web resources in a negative way by manipulating them in 
various ways [5]. Malicious or potentially unwanted applications are programs purposely designed to attack the security and 
privacy of the devices and their users. Moreover, Android apps are commonly hardened with advanced anti-analysis 
techniques, including obfuscation [3, 6] and packing [7], which turn their analysis into a really challenging task. To cope with 
this challenge, Anti-Virus (AV) vendors and cyber security firms characterize newly discovered threats, label them with a 
family name, and share the specimens  together with associated Indicators of Compromise (IoC) with the security community. 
Labels are usually assigned based on some static information, including code structures [8] and other IoCs which are easy to 
modify using different transformation attacks [9, 10]. 

Despite the importance of the labeling process, AV vendors use different criteria to name samples and families [11]. As a 
result, re-cent studies have shown that not all samples associated to a family are always related [12]. Furthermore, it is 
common to find the opposite: two apps in different families with related behaviors [13]. In addition, the majority of the labels 
assigned are not consistent with the actual behavior of apps [14] and, in most cases, each AV engine produces a different 
security report and risk score for a malicious application. Two main strategies are proposed to deal with these inconsistencies: 
i) considering sub-families (or variants) to divide families into smaller groups of apps with more akin behavior [13], and ii) 
extracting a unique behavioral core from each malware family. Both of these strategies suffer from important limitations as we 
explain next. 

On the one hand, methods proposed for dividing families into sub-families are error-prone and inaccurate due to their 
dependence on either contextualized features or manual inspection. First, features extracted by related work are currently not 
robust enough to address this problem as they are easy to manipulate and bypass [15]. Second, human-dependent systems 
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cannot keep up with the amount of malware being processed nowadays [16–18]. Moreover, the accuracy of manual inspection 
has been repeatedly questioned [19]. On the other hand, some systems are designed to extract a semantic core from a number 
of Android applications [20] or from their corresponding families [21, 22]. While promising, they suffer from a number of 
limitations, including scalability issues [20], memory complexity [21], and their excessive reliance on features extracted from 
specific code structures (e.g., loops) [22]. 

In this paper, we propose Androinet, an approach to characterize Android malware families. Unlike previous works, our 
method does not rely on a precise human-vetting process, which makes it more scalable and more suitable for learning in the 
presence of concept drift [23]. Also, instead of operating on a per-app granularity, it looks at groups of apps and leverages 
differential anal-ysis to extract common family behavior [24]. Thus, Androinet is more resilient to feature perturbations and 
manipulations. Our approach to build up a semantic-based core works as follows: we first create an aggregated call graph 
where each node represents a method and each edge shows an invocation between two different methods. Methods are 
represented as hashes computed with a cus-tom fuzzy hashing function. Thus, similar methods across a group of samples are 
treated as a single node in the aggregated call graph. Aggregated call graphs have fewer nodes (since common hashes are 
considered as a single node) and connections as compared to individual call graphs. Both of these improve the performance of 
graph mining algorithms. Second, Androinet can deal with repackaged apps [25] more effectively. By looking at common 
methods in malware, non-popular methods (typically attributed to the original repackaged app) are discarded [24]. 
Additionally, a greedy algorithm is used to mine paths from the aggregated call graph depending on the maximum length 
which is justified. This makes the method applicable at different granularity levels similar to re-cent works [26, 27]. Each path 
may contain one or more calls to sensitive API methods. Therefore, less frequent edges in a family are also pruned to speed up 
the mining process. 

Contributions. This work makes the following contributions: 

• We propose a new characterization approach for Android malware families based on common ensembles of sensitive 
API calls. Contrarily to other related works which rely on individual API methods, we consider ensembles of API 
methods that are shared by a number of samples in each family. Also, our approach can be tuned to different granularity 
levels. 

• We study and report common and rare ensembles of API methods in three types of Android malware: ransomware, SMS 
Trojans and banking Trojans. We discuss real examples for each type by linking these ensembles to apps’ behavior. 

• We report some anomalies that exist in the current family labeling of Android malware. In particular, we give examples 
of apps with identical and with very similar behavior despite belonging to different families. 

2 APPROACH 

This section presents our approach in detail. We first provide an overview of our system and then describe each component in 
detail. 

2.1 System Overview 

The system proposed in this work is composed of five main steps as depicted in Fig. 1. Given a specific Android 
malware family, it first computes the fuzzy hash values (h1, h2, . . . , hn ) of all extracted methods from applications (a1, a2, . . . , 
an) using a number of fea-tures (f1, f2, . . . , fn ). In parallel, we obtain the method call graphs of all apps (д1, д2, . . . , дn ). Next, the 
method call graph of each appli-cation is converted to a hash graph (HG), where nodes are hashes and edges are connections 
between hashes, all of which are re-constructed based on the methods connections of the method call graph. In the third step, 
hash graphs of different apps are all merged into an aggregated hash graph (AHG). We then extract paths using graph mining 
algorithms and we record ensembles of sensitive API methods (s1, s 2, . . . , sn ) observed in these paths. Finally, app 
featurevectors (v1, v2, . . . , vn ) are created based on these ensembles. These vectors can be used as signatures to characterize 
family behavior. 
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2.2 Method Hashing (Step #1) 

The first step involves computing fuzzy hash values of all methods extracted from the apps which do belong to the same 
family (see step #1 in Fig. 1). These values are used later to build call graphs and to extract sensitive API calls which are 
shared among a number of methods that resemble each other. This makes the system more resilient to transformation attacks 
compared to similar systems that rely on common sensitive API calls of identical method call graphs. 

To generate a fuzzy hash value for each method (mj ) we con-sider several features, including the control flow graph 
signature created by Cesare’s grammar (Gj ) [28], a method’s name (Nj ) and its class name (Cj ), a method’s intents (I j ), its 
sensitive API calls (Sj ), and, finally, native and incognito methods (Mj ) found within the method. Thus, the method hashing 
process is performed by ap-plying a regular hash function on these features extracted for each method [24, 25] by dividing 
them into pieces (or segments). These segments contain fragments of traditional hashes joined together for comparative 
purposes and are obtained using a rolling hash. A rolling hash makes use of a trigger value to determine the number of 
segments in each feature [29]. 

In what follows, we use the short form of hj when we refer to the fuzzy hash value calculated for method j. A fuzzy hash 
value can be shared by two or more methods if they are exactly the same (exact match) or are slightly different (approximate 
match). 

2.3 Building an Aggregated Hash Graph (Steps #2 & #3) 

In the second step, we aim at creating a specific form of call graph, which we call aggregated hash graph (AHG), per 
family. Here, nodes are hashes obtained from step #1, and edges show whether or not there are connections between pairs of 
hashes (i.e., between differ-ent methods). An aggregated hash graph merges similar methods of different apps of a particular 
family into one node. This will thus speed up the extraction of common behaviors from the resulting graph. 

To build this comprehensive graph, we first build a hash graph (HG) for each application separately. Thus, methods 
extracted from each app are assigned a hash value as described in Section 2.2. Then, hashes are connected to each other based 
on methods connections in the call graph (see #2 in Fig. 1). For instance, there is an edge between hi and h j (hi → hj ) if and 
only if there is a call in method to method j (i → j). 

When such graph is generated for all apps in one family, an aggregated graph is obtained by simply merging common nodes 
(or hashes) and adding all edges that exist between each pair of nodes (see #3 in Fig. 1). Also, a unique weight (w1, w 2, . . . , wn) 
is assigned to each edge by summing up common ones in apps. The weight of an edge is 1 in the aggregated graph if it is 
present in only one application. 

Therefore, an AHG is a weighted bi-directional graph for each family where each weight shows how many apps in the family 
share the same connection between two hashes and in the same direction. Thus, one can obtain meaningful insights about the 
common behavior in a particular family by inspecting these connections and their corresponding weights. Fig. 2 shows a 
subgraph of the AHG extracted for the oldboot family with 11 apps. Here, each weight (represented by the thickness of an 
edge) shows how many apps share a particular method or an edge across the family. 

The main difference between building an AHG and simply merg-ing all call graphs of applications in a family is that, in the 
former case, similar methods are assigned with equal hashes and, thus, are considered as a single node. Instead, in the latter 
case, an in-distinguishable change between methods renders different nodes. Therefore, our system is more resilient to 
automatic transformation attacks where we intend to extract common malicious behavior from a collection of apps belonging 
to a specific Android malware family. 

2.4 Extracting Ensembles of API Calls (Step #4) 

Building an aggregated hash graph per family using method hashes reveals two important pieces of information: i) the 
frequency of similar methods in all apps, ii) and the frequency of methods calls in all similar methods in a family. However, 
inspecting popular methods or calls gives a limited understanding of the behavioral capabilities of a malware family. Thus, in 
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the last step, we extract ensembles of sensitive API calls observed either in methods or consecutive method calls of the 
aggregated graph (see #4 in Fig. 1). 

API calls are appropriate representatives of an app’s behavior. Sensitive API calls are those which can threaten user’s 
security and privacy and can be used to perform various operations, ranging from OS-related to generic ones such as file 
system operations. We have considered 40 sensitive API calls which cover a wide range of activities as shown in [24]. These 
methods can be used for a variety of purposes. On the one hand, some API methods can be used to record device specific 
information (e.g., DeviceId or SubscriberId), location information, installed packages, and running processes or services. On 
the other hand, some of the API calls can be used to leak sensitive information to remote servers either by sending text 
messages or by establishing remote connections. Furthermore, we have considered methods by which malware specimens can 
manip-ulate critical information such as files (e.g., by creating, deleting or encrypting), processes and apps’ contents that are 
handled by content providers. Finally, we have considered methods that are used by some apps to dynamically load classes 
and to deliver their malicious functionality at runtime. 

It is worth noting that although some of these methods have been recently deprecated, only 20% of Android devices are 
running the newest major version of this OS [18]. This suggests that old Android malware with outdated API calls can still 
affect a large number of users, and, for this reason, we have not excluded these methods from our list. In addition, some of the 
methods considered here may not look sensitive alone but they could potentially be malicious when they appear with other 
API calls in an ensemble. 

To extract ensembles of API calls from each family, we first identify all source methods in the AHG, i.e., those methods which 
are either isolated (indeдree = 0 and outdeдree = 0), or they have not been called from any other methods (indeдree = 0). 
Afterwards, we extract all paths originating from source methods using a greedy path mining algorithm with respect to the 
weights of the edges. 

This implies that all edges in a particular path do have a common frequency among apps which belong to the same family. 
Once these paths are extracted, we collect sensitive API calls appearing in each path. In particular, the union of sensitive calls 
along one path results in a unique ensemble of sensitive API calls for that specific path. So, we are finally left with several 
ensembles of API calls per family which have different percentages of prevalence among apps. 

2.5 Creating Feature Vectors (Step #5) 

Once ensembles of sensitive API calls are extracted, each application is assigned a binary feature vector. Each feature (named 
fj in figures) is a unique ensemble of API calls in a family. The length of this vector for each app is thus equal to the total 
number of extracted ensembles from the entire dataset, and the presence or absence of an ensemble is shown with 1 or 0. 

To measure similarities and differences between vectors, we use the cosine similarity metric as defined in Eq. 1. Specifically, 
given two vectors, A1 and A2, their cosine similarity is computed by scaling the dot product of these vectors to their 
magnitudes. Thus, the output is in the [0, 1] interval. 

Contrarily to the cosine similarity, the cosine distance expresses vectors dissimilarity in positive space (i.e., [0, 1]). This is 
done by subtracting the cosine similarity from 1 as follows: Distcos (A1, A2) = 1 −Simcos (A1, A2). Thus, the cosine distance of two 
vectors is close to 0 when they are highly similar, and it is almost 1 when two vectors are completely different. 

3 EVALUATION 

In this section we evaluate our approach. We first present our experimental setting and describe our dataset. We then apply 
our system to about 700 families and 16K apps, and we present our results by grouping these families by type of family (i.e., 
ransomware, and two types of Trojans). We also describe how our approach can help in extracting the common malicious 
behavior of these families and how it finally leads to a fine-grained understanding of security sensitive operations which are 
exercised by each family. 
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3.1 Experimental Setting and Dataset 

The proposed system has been implemented in Python. Our implementation extracts all method’s features as well as call 
graphs using Androguard [30], a full Python reverse engineering tool developed for Android apps. We have evaluated our 
system on the biggest aca-demic dataset of Android apps, known as AndroZoo [31]. Families have been all extracted using 
Euphony [11]. 

Experiments are all conducted on a 2.4 GHz Intel Xeon Ubuntu server with 40 CPUs and 128 GB of RAM. As we are 
interested in extracting common behavior from all apps in a medium and big size families, we discard those which contain less 
than 7 apps. Also, to alleviate the expensive process of path mining in large call graphs, we only extract paths with a maximum 
length of 2. Finally, we have excluded paths that include edges shared by less than 70% of apps. Therefore, if a family does not 
contain ensembles of sensitive API calls shared by more than 70% of apps, it is removed from the dataset as well. 

AndroZoo contains around 8M Android apps from more than 3,000 families. The apps are gathered from 15 known markets 
and 1 unknown repository. However, the majority of them (≈ 97%) are collected from 3 main app markets, including Google 
Play, Anzhi and AppChina. Each app in this dataset is regularly scanned by various Anti-Virus (AV) vendors to separate 
malicious apps from benign ones. Around 1%, 33% and 17% of apps in the three markets in AndroZoo are malware according 
to at least 10 different AV vendors. Thus, our dataset of malicious apps is a subset of this huge market with 117 families and 
3,050 malware specimens (see Table 1). 

Table 1: Statistics of the dataset considered for case study, including the number of apps, number of families and the average 
size of applications (MB). 

Malware 
Type 

#App
s 

#Famili
es 

Avg. 
Size 

    

Ransomware 824 7 4.98 
SMS Trojan 1,967 98 9.88 
Banking 
Trojan 259 12 10.20 

Total 3,050 117 8.35 

 

3.2 Description of Experiments 

Our system is evaluated with three types of malware families: ransomware (§3.3), SMS Trojan (§3.4) and Banking Trojan 
(§3.5) families. We have obtained the type of each family from AndroZoo. Our choice is motivated by the increasing popularity 
of these types of malware in recent years [17, 32]. For each type, i) we report the most common and rarest ensembles of 
sensitive API calls, ii) we present a case study to discuss one of the most popular families, and iii) we study the following two 
scenarios: a) where two apps from different families do share the same signature, and b) where two apps from different 
families have similar signatures (i.e., those that are different in two ensembles of API calls). These scenarios are used to 
provide an intra-family characterization. To report these scenarios, we rely on the cosine distance between the apps’ feature 
vectors (as discussed in Section 2.5). All these three steps together allow us to confirm the applicability of our approach. We 
next describe each of the types of families studied. Furthermore, we have evaluated the time and memory complexity of our 
system for each type as summarized in Table 2. 

Table 2: Average amount of time took in each step of our approach per family (in sec.). 

Malware 
Type 

AHG 
Extraction 

Ensemble 
Extraction 

   

Ransomware 35.51 266.17 
SMS Trojan 44.92 44.31 
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Banking 
Trojan 57.19 67.81 

3.3 Ransomware 

Android ransomware families are categorized into two general groups, screen lockers and crypto ransomware [33, 34]. Apps 
from the first group lock the smartphone screen, while those in the sec-ond group encrypt the victim’s valuable files, both with 
the goal of extorting users to pay a ransom. Also, there are few families such as Cokri and DoubleLocker which have both 
capabilities. On the one hand, screen lockers follow three major strategies to achieve their goals, including activity hijacking, 
modifying specific parameters and disabling certain UI buttons. The main purpose of these strategies is to guarantee that the 
ransomware activity is always on top of other activities. On the other hand, crypto ransomware uses standard or customized 
crypto-systems to encrypt critical files.Our dataset contains 824 ransomware samples from 7 different Android families as 
shown in Table 1. However, apps are not evenly distributed across families. For instance, the svpeng family has 604 
specimens, whereas jisut contains only 4 malicious apps. In general, we could extract 25 ensembles of sensitive API methods 
by applying our method on ransomware apps. Experimental results (Fig. 3) show that 11 ensembles are present in more than 
70% of ransomware specimens. Instead, only few ensembles are rare they are present in less than 2% of apps (e.g., ensembles 
4, 14 and 25 in Table 3). More details are presented in Appendix A. 

3.4 SMS Trojan 

From a general point of view, a Trojan is a type of malware that disguise itself as a legitimate application and commonly 
violates personal or confidential information stored on the device by per-forming secret operations. A smartphone Trojan can 
be seen as an application that affects the way a mobile device is being con-trolled [35]. Once installed on the victim’s device, it 
performs a wide range of silent activities, ranging from harvesting user or de-vice specific information to intercepting 
incoming and/or outgoing text messages, sending premium SMS messages and connecting the device to a botnet to name a 
few. As Android Trojans commonly masquerade as popular legitimate apps available in official markets, they affect a large 
number of users. 

SMS Trojans are malware specimens that usually monetize users by sending text messages to premium rate numbers [9, 
36]. Our dataset contains 1,967 apps from 98 SMS Trojan families. We have extracted 168 different ensembles of API methods 
from these apps. Results show that 3 ensembles of API methods (i.e., <delete(), ex-ists()> and delete() and getClassLoader()) 
are present in more than 50% of apps in the different families. On the other hand, almost half of the ensembles are specific to 
very few apps in our dataset. In particular, 91 ensembles of API methods (54%) are present in less than 2% of apps in the SMS 
Trojan families. Also, ensembles with length 2 are more prevalent among SMS Trojan families as compared to ransomware. In 
addition, two long ensembles with 6 sensitive API methods exist in 5 malware specimens. More details are provided in 
Appendix B. 

3.5 Banking Trojan 

The main goal of banking Trojans is to steal banking or credential information. They usually do this by either intercepting SMS 
messages [37], or by overlaying a fake window on top of other financial apps and websites [38]. In addition, other variants of 
Android banking Trojans may have some additional capabilities. Studies show that most of banking Trojans target specific 
geographical locations. 
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For example, Russia and Australia are usually on top of this list [37]. 

Our dataset contains 259 apps and 12 Banking Trojan families from which we have extracted 50 unique ensembles of 
sensitive API methods. There are 2 ensembles of API methods, including getClassLoader() and getInputStream() that are 
shared by more than 50% of apps from different families. This means that more than half of apps in different families intercept 
from open connections, and they load their malicious classes at runtime like SMS Trojan applications and similar to the very 
recently detected variant of Rotexy family1. On the contrary, there are 9 API ensembles which are common among less than 
5% of apps. Also, ensembles of length one are more prevalent among banking Trojans than ensembles of other lengths. More 
details are presented in Appendix C. 

4 CONCLUSION AND FUTURE WORK 

In this paper, we proposed a new approach to characterize Android malware families based on ensembles of API methods 
that are exercised by the majority of apps. Instead of relying on individual API calls, we extract ensembles of API calls to make 
the approach more resilient against transformation attacks. In addition, API ensembles provide the analysts with more 
meaningful insights of the behavior of an app. We make use of a fast graph-mining algorithm to extract these common and 
sensitive API ensembles from an aggregated form of method call graph. Experimental results obtained from applying our 
method to three types of Android malware; including Ransomware, SMS Trojans, and banking Trojans reveal several 
interesting findings. First, malicious operations do not necessarily contain several sensitive API methods. In fact, a 
considerable number of common ensembles (≈ 72% in ransomware, ≈ 21% in SMS Trojans, and ≈ 52% in banking Trojans) 
contain only one sensitive API method. Second, opposite to ransomware and banking Trojans, ensembles of two API methods 
were the most common in SMS Trojans. Finally, we found several samples with identical ensembles though belonging to 
different families. 

This work can be extended in various ways as future work. More exhaustive static analysis tools such as Soot2 can be used to 
extract call graphs. Additionally, a query-like based system can be leveraged to mine a dataset for threat discovery. Also, 
ensembles of API calls could be mapped to relevant behavior by developing and training an expert system. 
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