
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1042

MALWARE DETECTION OR ANDROID SMARTPHONE USING SENTIMENT

ALGORITHM

Ms. Varalakshmi. R*1, Mrs. Dr. Ganga. T.K*2

*1M.Phil Research Scholar, Department of Computer Science, Muthurangam Government Arts College, Tamilnadu,
India.

*2Assistant Professor, Department of Computer Science, Muthurangam Government Arts College, Tamilnadu, India.
--***---
Abstract- Assigning family labels to malicious apps is a common practice for grouping together malware with identical
behavior. However, recent studies show that apps labeled as belonging to the same family do not necessarily behave similarly:
one app may lack or have extra capabilities compared to others in the same family, and, conversely, two apps labeled as
belonging to different families may exhibit close behavior. To reveal these inconsistencies, this paper presents Androinet, a
characterization system for Android malware families based on ensembles of sensitive API calls extracted from aggregated
call graphs of different families. Our method has several advantages over similar characterization approaches, including a
greater reduction ratio with respect to original call graphs, robustness against transformation attacks, and flexibility to be ap-
plied at different granularity levels. We experimentally validate our approach and discuss three specific use cases: mobile
ransomware, SMS Trojans and banking Trojans. This left us with some inter-esting findings. First of all, malicious operations
in these types of malware are not necessarily exercised by using several sensitive API calls all together. Second, SMS Trojans
have larger ensembles of API calls compared to the other types. Last but not least, we identified several samples with identical
ensembles though being labeled as part of different families.

Key Words: Android Malware, Malware Analysis, Malware Classification

1 INTRODUCTION

Android is the most popular Operating System (OS) worldwide, with a larger market share than Windows PC and Windows
phone together [1]. Android is a complex system that can integrate third-party software from on-line markets, some of which
are weakly vetted [2]. This altogether poses several security and privacy concerns. In terms of security, new attack vectors are
discovered at an unprecedented rate [3], while, in terms of privacy, apps have access to a wide range of information they often
collect in bulk [4]. Some Android apps also impact the integrity of web resources in a negative way by manipulating them in
various ways [5]. Malicious or potentially unwanted applications are programs purposely designed to attack the security and
privacy of the devices and their users. Moreover, Android apps are commonly hardened with advanced anti-analysis
techniques, including obfuscation [3, 6] and packing [7], which turn their analysis into a really challenging task. To cope with
this challenge, Anti-Virus (AV) vendors and cyber security firms characterize newly discovered threats, label them with a
family name, and share the specimens together with associated Indicators of Compromise (IoC) with the security community.
Labels are usually assigned based on some static information, including code structures [8] and other IoCs which are easy to
modify using different transformation attacks [9, 10].

Despite the importance of the labeling process, AV vendors use different criteria to name samples and families [11]. As a
result, re-cent studies have shown that not all samples associated to a family are always related [12]. Furthermore, it is
common to find the opposite: two apps in different families with related behaviors [13]. In addition, the majority of the labels
assigned are not consistent with the actual behavior of apps [14] and, in most cases, each AV engine produces a different
security report and risk score for a malicious application. Two main strategies are proposed to deal with these inconsistencies:
i) considering sub-families (or variants) to divide families into smaller groups of apps with more akin behavior [13], and ii)
extracting a unique behavioral core from each malware family. Both of these strategies suffer from important limitations as we
explain next.

On the one hand, methods proposed for dividing families into sub-families are error-prone and inaccurate due to their
dependence on either contextualized features or manual inspection. First, features extracted by related work are currently not
robust enough to address this problem as they are easy to manipulate and bypass [15]. Second, human-dependent systems

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1043

cannot keep up with the amount of malware being processed nowadays [16–18]. Moreover, the accuracy of manual inspection
has been repeatedly questioned [19]. On the other hand, some systems are designed to extract a semantic core from a number
of Android applications [20] or from their corresponding families [21, 22]. While promising, they suffer from a number of
limitations, including scalability issues [20], memory complexity [21], and their excessive reliance on features extracted from
specific code structures (e.g., loops) [22].

In this paper, we propose Androinet, an approach to characterize Android malware families. Unlike previous works, our
method does not rely on a precise human-vetting process, which makes it more scalable and more suitable for learning in the
presence of concept drift [23]. Also, instead of operating on a per-app granularity, it looks at groups of apps and leverages
differential anal-ysis to extract common family behavior [24]. Thus, Androinet is more resilient to feature perturbations and
manipulations. Our approach to build up a semantic-based core works as follows: we first create an aggregated call graph
where each node represents a method and each edge shows an invocation between two different methods. Methods are
represented as hashes computed with a cus-tom fuzzy hashing function. Thus, similar methods across a group of samples are
treated as a single node in the aggregated call graph. Aggregated call graphs have fewer nodes (since common hashes are
considered as a single node) and connections as compared to individual call graphs. Both of these improve the performance of
graph mining algorithms. Second, Androinet can deal with repackaged apps [25] more effectively. By looking at common
methods in malware, non-popular methods (typically attributed to the original repackaged app) are discarded [24].
Additionally, a greedy algorithm is used to mine paths from the aggregated call graph depending on the maximum length
which is justified. This makes the method applicable at different granularity levels similar to re-cent works [26, 27]. Each path
may contain one or more calls to sensitive API methods. Therefore, less frequent edges in a family are also pruned to speed up
the mining process.

Contributions. This work makes the following contributions:

• We propose a new characterization approach for Android malware families based on common ensembles of sensitive
API calls. Contrarily to other related works which rely on individual API methods, we consider ensembles of API
methods that are shared by a number of samples in each family. Also, our approach can be tuned to different granularity
levels.

• We study and report common and rare ensembles of API methods in three types of Android malware: ransomware, SMS
Trojans and banking Trojans. We discuss real examples for each type by linking these ensembles to apps’ behavior.

• We report some anomalies that exist in the current family labeling of Android malware. In particular, we give examples
of apps with identical and with very similar behavior despite belonging to different families.

2 APPROACH

This section presents our approach in detail. We first provide an overview of our system and then describe each component in
detail.

2.1 System Overview

The system proposed in this work is composed of five main steps as depicted in Fig. 1. Given a specific Android
malware family, it first computes the fuzzy hash values (h1, h2, . . . , hn) of all extracted methods from applications (a1, a2, . . . ,
an) using a number of fea-tures (f1, f2, . . . , fn). In parallel, we obtain the method call graphs of all apps (д1, д2, . . . , дn). Next, the
method call graph of each appli-cation is converted to a hash graph (HG), where nodes are hashes and edges are connections
between hashes, all of which are re-constructed based on the methods connections of the method call graph. In the third step,
hash graphs of different apps are all merged into an aggregated hash graph (AHG). We then extract paths using graph mining
algorithms and we record ensembles of sensitive API methods (s1, s 2, . . . , sn) observed in these paths. Finally, app
featurevectors (v1, v2, . . . , vn) are created based on these ensembles. These vectors can be used as signatures to characterize
family behavior.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1044

2.2 Method Hashing (Step #1)

The first step involves computing fuzzy hash values of all methods extracted from the apps which do belong to the same
family (see step #1 in Fig. 1). These values are used later to build call graphs and to extract sensitive API calls which are
shared among a number of methods that resemble each other. This makes the system more resilient to transformation attacks
compared to similar systems that rely on common sensitive API calls of identical method call graphs.

To generate a fuzzy hash value for each method (mj) we con-sider several features, including the control flow graph
signature created by Cesare’s grammar (Gj) [28], a method’s name (Nj) and its class name (Cj), a method’s intents (I j), its
sensitive API calls (Sj), and, finally, native and incognito methods (Mj) found within the method. Thus, the method hashing
process is performed by ap-plying a regular hash function on these features extracted for each method [24, 25] by dividing
them into pieces (or segments). These segments contain fragments of traditional hashes joined together for comparative
purposes and are obtained using a rolling hash. A rolling hash makes use of a trigger value to determine the number of
segments in each feature [29].

In what follows, we use the short form of hj when we refer to the fuzzy hash value calculated for method j. A fuzzy hash
value can be shared by two or more methods if they are exactly the same (exact match) or are slightly different (approximate
match).

2.3 Building an Aggregated Hash Graph (Steps #2 & #3)

In the second step, we aim at creating a specific form of call graph, which we call aggregated hash graph (AHG), per
family. Here, nodes are hashes obtained from step #1, and edges show whether or not there are connections between pairs of
hashes (i.e., between differ-ent methods). An aggregated hash graph merges similar methods of different apps of a particular
family into one node. This will thus speed up the extraction of common behaviors from the resulting graph.

To build this comprehensive graph, we first build a hash graph (HG) for each application separately. Thus, methods
extracted from each app are assigned a hash value as described in Section 2.2. Then, hashes are connected to each other based
on methods connections in the call graph (see #2 in Fig. 1). For instance, there is an edge between hi and h j (hi → hj) if and
only if there is a call in method to method j (i → j).

When such graph is generated for all apps in one family, an aggregated graph is obtained by simply merging common nodes
(or hashes) and adding all edges that exist between each pair of nodes (see #3 in Fig. 1). Also, a unique weight (w1, w 2, . . . , wn)
is assigned to each edge by summing up common ones in apps. The weight of an edge is 1 in the aggregated graph if it is
present in only one application.

Therefore, an AHG is a weighted bi-directional graph for each family where each weight shows how many apps in the family
share the same connection between two hashes and in the same direction. Thus, one can obtain meaningful insights about the
common behavior in a particular family by inspecting these connections and their corresponding weights. Fig. 2 shows a
subgraph of the AHG extracted for the oldboot family with 11 apps. Here, each weight (represented by the thickness of an
edge) shows how many apps share a particular method or an edge across the family.

The main difference between building an AHG and simply merg-ing all call graphs of applications in a family is that, in the
former case, similar methods are assigned with equal hashes and, thus, are considered as a single node. Instead, in the latter
case, an in-distinguishable change between methods renders different nodes. Therefore, our system is more resilient to
automatic transformation attacks where we intend to extract common malicious behavior from a collection of apps belonging
to a specific Android malware family.

2.4 Extracting Ensembles of API Calls (Step #4)

Building an aggregated hash graph per family using method hashes reveals two important pieces of information: i) the
frequency of similar methods in all apps, ii) and the frequency of methods calls in all similar methods in a family. However,
inspecting popular methods or calls gives a limited understanding of the behavioral capabilities of a malware family. Thus, in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1045

the last step, we extract ensembles of sensitive API calls observed either in methods or consecutive method calls of the
aggregated graph (see #4 in Fig. 1).

API calls are appropriate representatives of an app’s behavior. Sensitive API calls are those which can threaten user’s
security and privacy and can be used to perform various operations, ranging from OS-related to generic ones such as file
system operations. We have considered 40 sensitive API calls which cover a wide range of activities as shown in [24]. These
methods can be used for a variety of purposes. On the one hand, some API methods can be used to record device specific
information (e.g., DeviceId or SubscriberId), location information, installed packages, and running processes or services. On
the other hand, some of the API calls can be used to leak sensitive information to remote servers either by sending text
messages or by establishing remote connections. Furthermore, we have considered methods by which malware specimens can
manip-ulate critical information such as files (e.g., by creating, deleting or encrypting), processes and apps’ contents that are
handled by content providers. Finally, we have considered methods that are used by some apps to dynamically load classes
and to deliver their malicious functionality at runtime.

It is worth noting that although some of these methods have been recently deprecated, only 20% of Android devices are
running the newest major version of this OS [18]. This suggests that old Android malware with outdated API calls can still
affect a large number of users, and, for this reason, we have not excluded these methods from our list. In addition, some of the
methods considered here may not look sensitive alone but they could potentially be malicious when they appear with other
API calls in an ensemble.

To extract ensembles of API calls from each family, we first identify all source methods in the AHG, i.e., those methods which
are either isolated (indeдree = 0 and outdeдree = 0), or they have not been called from any other methods (indeдree = 0).
Afterwards, we extract all paths originating from source methods using a greedy path mining algorithm with respect to the
weights of the edges.

This implies that all edges in a particular path do have a common frequency among apps which belong to the same family.
Once these paths are extracted, we collect sensitive API calls appearing in each path. In particular, the union of sensitive calls
along one path results in a unique ensemble of sensitive API calls for that specific path. So, we are finally left with several
ensembles of API calls per family which have different percentages of prevalence among apps.

2.5 Creating Feature Vectors (Step #5)

Once ensembles of sensitive API calls are extracted, each application is assigned a binary feature vector. Each feature (named
fj in figures) is a unique ensemble of API calls in a family. The length of this vector for each app is thus equal to the total
number of extracted ensembles from the entire dataset, and the presence or absence of an ensemble is shown with 1 or 0.

To measure similarities and differences between vectors, we use the cosine similarity metric as defined in Eq. 1. Specifically,
given two vectors, A1 and A2, their cosine similarity is computed by scaling the dot product of these vectors to their
magnitudes. Thus, the output is in the [0, 1] interval.

Contrarily to the cosine similarity, the cosine distance expresses vectors dissimilarity in positive space (i.e., [0, 1]). This is
done by subtracting the cosine similarity from 1 as follows: Distcos (A1, A2) = 1 −Simcos (A1, A2). Thus, the cosine distance of two
vectors is close to 0 when they are highly similar, and it is almost 1 when two vectors are completely different.

3 EVALUATION

In this section we evaluate our approach. We first present our experimental setting and describe our dataset. We then apply
our system to about 700 families and 16K apps, and we present our results by grouping these families by type of family (i.e.,
ransomware, and two types of Trojans). We also describe how our approach can help in extracting the common malicious
behavior of these families and how it finally leads to a fine-grained understanding of security sensitive operations which are
exercised by each family.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1046

3.1 Experimental Setting and Dataset

The proposed system has been implemented in Python. Our implementation extracts all method’s features as well as call
graphs using Androguard [30], a full Python reverse engineering tool developed for Android apps. We have evaluated our
system on the biggest aca-demic dataset of Android apps, known as AndroZoo [31]. Families have been all extracted using
Euphony [11].

Experiments are all conducted on a 2.4 GHz Intel Xeon Ubuntu server with 40 CPUs and 128 GB of RAM. As we are
interested in extracting common behavior from all apps in a medium and big size families, we discard those which contain less
than 7 apps. Also, to alleviate the expensive process of path mining in large call graphs, we only extract paths with a maximum
length of 2. Finally, we have excluded paths that include edges shared by less than 70% of apps. Therefore, if a family does not
contain ensembles of sensitive API calls shared by more than 70% of apps, it is removed from the dataset as well.

AndroZoo contains around 8M Android apps from more than 3,000 families. The apps are gathered from 15 known markets
and 1 unknown repository. However, the majority of them (≈ 97%) are collected from 3 main app markets, including Google
Play, Anzhi and AppChina. Each app in this dataset is regularly scanned by various Anti-Virus (AV) vendors to separate
malicious apps from benign ones. Around 1%, 33% and 17% of apps in the three markets in AndroZoo are malware according
to at least 10 different AV vendors. Thus, our dataset of malicious apps is a subset of this huge market with 117 families and
3,050 malware specimens (see Table 1).

Table 1: Statistics of the dataset considered for case study, including the number of apps, number of families and the average
size of applications (MB).

Malware
Type

#App
s

#Famili
es

Avg.
Size

Ransomware 824 7 4.98
SMS Trojan 1,967 98 9.88
Banking
Trojan 259 12 10.20

Total 3,050 117 8.35

3.2 Description of Experiments

Our system is evaluated with three types of malware families: ransomware (§3.3), SMS Trojan (§3.4) and Banking Trojan
(§3.5) families. We have obtained the type of each family from AndroZoo. Our choice is motivated by the increasing popularity
of these types of malware in recent years [17, 32]. For each type, i) we report the most common and rarest ensembles of
sensitive API calls, ii) we present a case study to discuss one of the most popular families, and iii) we study the following two
scenarios: a) where two apps from different families do share the same signature, and b) where two apps from different
families have similar signatures (i.e., those that are different in two ensembles of API calls). These scenarios are used to
provide an intra-family characterization. To report these scenarios, we rely on the cosine distance between the apps’ feature
vectors (as discussed in Section 2.5). All these three steps together allow us to confirm the applicability of our approach. We
next describe each of the types of families studied. Furthermore, we have evaluated the time and memory complexity of our
system for each type as summarized in Table 2.

Table 2: Average amount of time took in each step of our approach per family (in sec.).

Malware
Type

AHG
Extraction

Ensemble
Extraction

Ransomware 35.51 266.17
SMS Trojan 44.92 44.31

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1047

Banking
Trojan 57.19 67.81

3.3 Ransomware

Android ransomware families are categorized into two general groups, screen lockers and crypto ransomware [33, 34]. Apps
from the first group lock the smartphone screen, while those in the sec-ond group encrypt the victim’s valuable files, both with
the goal of extorting users to pay a ransom. Also, there are few families such as Cokri and DoubleLocker which have both
capabilities. On the one hand, screen lockers follow three major strategies to achieve their goals, including activity hijacking,
modifying specific parameters and disabling certain UI buttons. The main purpose of these strategies is to guarantee that the
ransomware activity is always on top of other activities. On the other hand, crypto ransomware uses standard or customized
crypto-systems to encrypt critical files.Our dataset contains 824 ransomware samples from 7 different Android families as
shown in Table 1. However, apps are not evenly distributed across families. For instance, the svpeng family has 604
specimens, whereas jisut contains only 4 malicious apps. In general, we could extract 25 ensembles of sensitive API methods
by applying our method on ransomware apps. Experimental results (Fig. 3) show that 11 ensembles are present in more than
70% of ransomware specimens. Instead, only few ensembles are rare they are present in less than 2% of apps (e.g., ensembles
4, 14 and 25 in Table 3). More details are presented in Appendix A.

3.4 SMS Trojan

From a general point of view, a Trojan is a type of malware that disguise itself as a legitimate application and commonly
violates personal or confidential information stored on the device by per-forming secret operations. A smartphone Trojan can
be seen as an application that affects the way a mobile device is being con-trolled [35]. Once installed on the victim’s device, it
performs a wide range of silent activities, ranging from harvesting user or de-vice specific information to intercepting
incoming and/or outgoing text messages, sending premium SMS messages and connecting the device to a botnet to name a
few. As Android Trojans commonly masquerade as popular legitimate apps available in official markets, they affect a large
number of users.

SMS Trojans are malware specimens that usually monetize users by sending text messages to premium rate numbers [9,
36]. Our dataset contains 1,967 apps from 98 SMS Trojan families. We have extracted 168 different ensembles of API methods
from these apps. Results show that 3 ensembles of API methods (i.e., <delete(), ex-ists()> and delete() and getClassLoader())
are present in more than 50% of apps in the different families. On the other hand, almost half of the ensembles are specific to
very few apps in our dataset. In particular, 91 ensembles of API methods (54%) are present in less than 2% of apps in the SMS
Trojan families. Also, ensembles with length 2 are more prevalent among SMS Trojan families as compared to ransomware. In
addition, two long ensembles with 6 sensitive API methods exist in 5 malware specimens. More details are provided in
Appendix B.

3.5 Banking Trojan

The main goal of banking Trojans is to steal banking or credential information. They usually do this by either intercepting SMS
messages [37], or by overlaying a fake window on top of other financial apps and websites [38]. In addition, other variants of
Android banking Trojans may have some additional capabilities. Studies show that most of banking Trojans target specific
geographical locations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1048

For example, Russia and Australia are usually on top of this list [37].

Our dataset contains 259 apps and 12 Banking Trojan families from which we have extracted 50 unique ensembles of
sensitive API methods. There are 2 ensembles of API methods, including getClassLoader() and getInputStream() that are
shared by more than 50% of apps from different families. This means that more than half of apps in different families intercept
from open connections, and they load their malicious classes at runtime like SMS Trojan applications and similar to the very
recently detected variant of Rotexy family1. On the contrary, there are 9 API ensembles which are common among less than
5% of apps. Also, ensembles of length one are more prevalent among banking Trojans than ensembles of other lengths. More
details are presented in Appendix C.

4 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach to characterize Android malware families based on ensembles of API methods
that are exercised by the majority of apps. Instead of relying on individual API calls, we extract ensembles of API calls to make
the approach more resilient against transformation attacks. In addition, API ensembles provide the analysts with more
meaningful insights of the behavior of an app. We make use of a fast graph-mining algorithm to extract these common and
sensitive API ensembles from an aggregated form of method call graph. Experimental results obtained from applying our
method to three types of Android malware; including Ransomware, SMS Trojans, and banking Trojans reveal several
interesting findings. First, malicious operations do not necessarily contain several sensitive API methods. In fact, a
considerable number of common ensembles (≈ 72% in ransomware, ≈ 21% in SMS Trojans, and ≈ 52% in banking Trojans)
contain only one sensitive API method. Second, opposite to ransomware and banking Trojans, ensembles of two API methods
were the most common in SMS Trojans. Finally, we found several samples with identical ensembles though belonging to
different families.

This work can be extended in various ways as future work. More exhaustive static analysis tools such as Soot2 can be used to
extract call graphs. Additionally, a query-like based system can be leveraged to mine a dataset for threat discovery. Also,
ensembles of API calls could be mapped to relevant behavior by developing and training an expert system.

REFERENCES

[1] Statcounter. 2018. Operating System Market Share Worldwide. http://gs. statcounter.com/os-market-share.

[2] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li Li, Juan Tapiador, Jingcun Cao, and Guoai
Xu. 2018. Beyond Google Play: A Large-Scale Comparative Study of Chinese Android App Markets. In Proceedings of the
Internet Measurement Conference 2018. ACM, 293–307.

[3] Vincent Haupert, Dominik Maier, Nicolas Schneider, Julian Kirsch, and Tilo Müller. 2018. Honey, I Shrunk Your App
Security: The State of Android App Hardening. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 69–91.

http://gs.statcounter.com/os-market-share
http://gs.statcounter.com/os-market-share

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1049

[4] Xiang Pan, Yinzhi Cao, Xuechao Du, Boyuan He, Gan Fang, Rui Shao, and Yan Chen. 2018. FlowCog: context-aware
semantics extraction and analysis of in-formation flow leaks in android apps. In 27th {USENIX} Security Symposium
({USENIX} Security 18). 1669–1685.

[5] Xiaohan Zhang, Yuan Zhang, Qianqian Mo, Hao Xia, Zhemin Yang, Min Yang, Xiaofeng Wang, Long Lu, and Haixin Duan.
2018. An empirical study of web resource manipulation in real-world mobile applications. In 27th {USENIX} Security
Symposium ({USENIX} Security 18). 1183–1198.

[6] Omid Mirzaei, Jose M. de Fuentes, Juan Tapiador, and Lorena Gonzalez-Manzano. 2019. AndrODet: An adaptive
Android obfuscation detector. Future Generation Computer Systems 90 (2019), 240–261.

[7] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin Li, Xueqiang Wang, and X Wang. 2018.
Things you may not know about android (un) packers: a systematic study based on whole-system emulation. In 25th
Annual Network and Distributed System Security Symposium, NDSS. 18–21.

[8] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Jorge Blasco. 2014. Dendroid: A text mining
approach to analyzing and classifying code structures in android malware families. Expert Systems with Applications 41, 4
(2014), 1104–1117.

[9] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2013. Droidchameleon: evaluating android anti-malware against
transformation attacks. In Proceedings of the 8th ACM SIGSAC symposium on Information, computer and communications
security. ACM, 329–334.

[10] Pavel Laskov et al. 2014. Practical evasion of a learning-based classifier: A case study. In Security and Privacy (SP),
2014 IEEE Symposium on. IEEE, 197–211.

[11] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawendé F Bissyandé, Yves Le Traon, Jacques Klein,
and Lorenzo Cavallaro. 2017. Euphony: Harmonious unification of cacophonous anti-virus vendor labels for Android
malware. In Proceedings of the 14th International Conference on Mining Software Repositories. IEEE Press, 425–435.

[12] Sevil Sen, Emre Aydogan, and Ahmet I Aysan. 2018. Coevolution of Mobile Malware and Anti-Malware. IEEE
Transactions on Information Forensics and Security 13, 10 (2018), 2563–2574.

[13] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep Ground Truth Analysis of Current
Android Malware. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’17). Springer, Bonn, Germany, 252–276.

[14] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Av-class: A tool for massive malware
labeling. In International Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 230–253.

[15] Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu, and Bo Li. 2018. Automated poisoning attacks
and defenses in malware detection systems: An adversarial machine learning approach. computers & security 73 (2018),
326–344.

[16] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-wani, Riyaz Faizullabhoy, Ling Huang,
Vaishaal Shankar, Tony Wu, George Yiu, et al. 2016. Reviewer integration and performance measurement for malware
detection. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
122–141.

[17] Kaspersky Lab. 2018. Kaspersky Lab Threat Predictions For 2018. https://media.kasperskycontenthub.com/wp-
content/uploads/sites/43/2018/03/ 07164714/KSB_Predictions_2018_eng.pdf.

[18] Symantec. 2018. Executive Summary - 2018 Internet Security ThreatReport.
https://www.symantec.com/content/dam/symantec/docs/reports/ istr-23-executive-summary-en.pdf.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07164714/KSB_Predictions_2018_eng.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07164714/KSB_Predictions_2018_eng.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07164714/KSB_Predictions_2018_eng.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-executive-summary-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-executive-summary-en.pdf

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1050

[19] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur, Mauro Conti, and Muttukrishnan
Rajarajan. 2015. Android security: a survey of issues, malware penetration, and defenses. IEEE communications surveys &
tutorials 17, 2 (2015), 998–1022.

[20] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2015. Apkcombiner: Combining
multiple android apps to support inter-app analysis. In IFIP International Information Security Conference. Springer, 513–
527.

[21] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-faro, Gordon J. Ross, and Gianluca
Stringhini. 2017. MaMaDroid: Detecting Android Malware by Building Markov Chains of Behavioral Models. In Pro-
ceedings of the 24th Annual Network and Distributed System Security Symposium

(NDSS).

[22] Aravind Machiry, Nilo Redini, Eric Gustafson, Yanick Fratantonio, Yung Ryn Choe, Christopher Kruegel, and Giovanni
Vigna. 2018. Using Loops For Malware Classification Resilient to Feature-unaware Perturbations. In Proceedings of the
34th Annual Computer Security Applications Conference. ACM, 112–123.

[23] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro.
2017. Transcend: Detecting concept drift in malware classification models. In PROCEEDINGS OF THE 26TH USENIX
SECURITY SYMPOSIUM (USENIX SECURITY’17). USENIX Association, 625–642.

[24] Guillermo Suarez-Tangil and Gianluca Stringhini. 2018. Eight Years of Rider Measurement in the Android Malware
Ecosystem: Evolution and Lessons Learned. arXiv preprint arXiv:1801.08115 (2018).

[25] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged smartphone applications in third-party
android marketplaces. In Proceedings of the second ACM conference on Data and Application Security and Privacy. ACM,
317–326.

[26] Fady Copty, Matan Danos, Orit Edelstein, Cindy Eisner, Dov Murik, and Benjamin Zeltser. 2018. Accurate Malware
Detection by Extreme Abstraction. In Proceedings of the 34th Annual Computer Security Applications Conference. ACM,
101–111.

[27] Omid Mirzaei, Guillermo Suarez-Tangil, Juan Tapiador, and Jose M de Fuentes. 2017. Triflow: Triaging android
applications using speculative information flows. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communica-tions Security. ACM, 640–651.

[28] Silvio Cesare and Yang Xiang. 2010. Classification of malware using structured control flow. In Proceedings of the
Eighth Australasian Symposium on Parallel and Distributed Computing-Volume 107. Australian Computer Society, Inc., 61–
70.

[29] Dustin Hurlbut-AccessData. 2009. Fuzzy Hashing for Digital Forensic Investiga-tors. (2009).

[30] Geoffroy Gueguen. 2012. Androguard. https://github.com/androguard/ androguard.

[31] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. Androzoo: Collecting millions of android
apps for the research community. In Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on.
IEEE, 468–471.

[32] Christiaan Beek, Diwakar Dinkar, Yashashree Gund, German Lancioni, Niamh Minihane, Francisca Moreno, Eric
Peterson, Thomas Roccia, Craig Schmugar, Rick Simon, Dan Sommer, Bing Sun, RaviKant Tiwari, and Vincent Weafer. 2017.
McAfee Labs Threats Report. Technical Report. McAfee Labs.

https://github.com/androguard/androguard
https://github.com/androguard/androguard

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1051

[33] Jing Chen, Chiheng Wang, Ziming Zhao, Kai Chen, Ruiying Du, and Gail-Joon Ahn. 2018. Uncovering the face of android
ransomware: Characterization and real-time detection. IEEE Transactions on Information Forensics and Security 13, 5
(2018), 1286–1300.

[34] Nicoló Andronio, Stefano Zanero, and Federico Maggi. 2015. Heldroid: Dissecting and detecting mobile ransomware.
In International Workshop on Recent Advances in Intrusion Detection. Springer, 382–404.

[35] Mikko Hyppönen and Tomi Tuominen. 2017.F-Secure State of cy-

ber security. https://www.f-secure.com/documents/996508/1030743/ cyber-security-report-2017.

[36] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get off of my market: detecting malicious apps in
official and alternative android markets.. In Proceedings of the 19th Annual Network and Distributed System Security
Symposium (NDSS), Vol. 25. 50–52.

[37] Roman Unuchek. 2017. A new era in mobile banking Trojans. https://securelist. com/a-new-era-in-mobile-banking-
trojans/79198/.

https://www.f-secure.com/documents/996508/1030743/cyber-security-report-2017
https://www.f-secure.com/documents/996508/1030743/cyber-security-report-2017
https://securelist.com/a-new-era-in-mobile-banking-trojans/79198/
https://securelist.com/a-new-era-in-mobile-banking-trojans/79198/
https://securelist.com/a-new-era-in-mobile-banking-trojans/79198/

