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Abstract - Drug discovery is the first step in the drug 
development process to identify drug candidates for future 
research in clinical trials. The process of drug discovery and 
generation using traditional methods takes 12-14 years. The 
complexity of drug development has increased over the 
years. This paper aims at exploring various methods used to 
generate and validate drugs. The review of this paper starts 
with a brief history of how drugs are generated. We have 
also discussed some drug discovery processes. In this paper 
we have elaborated efficient deep learning methods used for 
drug discovery to generate simulated SMILE (Simplified 
Molecular Input Line Entry System) strings. Prominent use 
of Autoencoders, LSTM (Long Short-Term Memory), and 
GANs (Generative Adversarial Networks) to Generate drug 
molecules. Followed with a detailed discussion of Validating 
and Simulating these drug molecules. Followed by 
challenges and future scope of drug generation using deep 
learning models. 
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1. INTRODUCTION  
 
Drug investigation is the process of discovering and/or 
designing medications in medicine, biotechnology, and 
pharmacology. Most medications have previously been 
found either by finding the active component in traditional 
treatments or by chance. Understanding how illness and 
infection are controlled at the molecular and physiological 
level, and then targeting specific entities based on this 
understanding, is a novel strategy. 
 

The identification of candidates, synthesis, 
characterization, screening, and tests for therapeutic 
effectiveness are all part of the drug development process. 
Medical research has become much more complicated in 
the last 40 years, requiring preclinical studies, 
investigational new drug (IND) filings, and full clinical 
testing before receiving FDA marketing clearance. New 
drug applications (NDAs) and biologics license 
applications (BLAs) are usually thoroughly evaluated 
before being approved, and then drug performance is 

resubmitted to regulatory bodies for post-marketing 
research. After a comprehensive medical review, the main 
objective is to offer more efficient and safer therapies to 
patients as soon as feasible. 

 
New drugs are developed through drug discovery. 

Drugs were formerly discovered mostly through 

discovering active components in traditional medications 

or by pure accident. Following that, traditional 

pharmacology was employed to go through chemical 

libraries containing small compounds, natural products, 

and plant extracts in order to locate those having 

therapeutic properties. Since the sequencing of human 

DNA, reverse pharmacology has used testing to find cures 

for existing ailments. Through the flow chart below, 

disease processes, molecular compound assays, current 

medicines with unforeseen side effects, and new 

technology promote drug development. 

 

Medication discovery nowadays include hit screening, 

medicinal chemistry, and hit optimization to limit possible 

drug adverse effects (increasing affinity and selectivity). 

This stage of the medication development process also 

improves efficacy or potency, metabolic stability, and oral 

bioavailability. A gene or protein that has a substantial 

impact in illness is identified as a target. Therapeutic 

qualities are noted after they have been recognized. To 

validate targets, scientists employ disease associations, 

bioactive chemicals, cell-based models, protein 

interactions, signaling pathways analysis, and gene 

functional analysis, as well as in vitro genetic 

manipulation, antibodies, and chemical genomics. 
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Figure 1: Drug Development Process 

 

Artificial Intelligence techniques give a collection of 

tools that can aid in the discovery and decision-making 

process for well-defined problems involving a large 

amount of high-quality data. AI may be used at any level of 

the drug development process. Target validation, the 

development of prognostic biomarkers, and the analysis of 

digital pathology data in clinical trials are just a few 

examples. The context and technique of the applications 

varied, with some generating precise forecasts and 

insights. The lack of interpretability and repeatability of 

AI-generated outputs, which may restrict their 

applicability, is one of the most difficult aspects of 

implementing AI. In this paper, we will improve various 

generative models for the process of drug discovery. 

 

2. LITERATURE REVIEW 
 

It is critical for end-to-end learning that the input 

includes all of the chemical compound's latent feature 

information. There is a lot of chemical data available, such 

as weight, molecular formula, rings, atoms, and SMILES. 

SMILES shows the chemical structure as a line of ASCII 

characters among the numerous bits of data. C1CCCC1 and 

CC(=O)NC1=CC=C(O)C=C1 are the chemical symbols for 

cyclohexane and acetaminophen, respectively. SMILES can 

indicate atoms (such as carbon, nitrogen, and oxygen), 

bonds (such as single, double, and triple bonds), rings 

(such as open ring, close ring, and ring number), 

aromaticity, and branching. 

 

Variational Auto-Encoders (Gomez-Bombarelli et al. 

2016), Adversarial Auto-Encoders (Kadurin et al. 2017; 

Kadurin et al. 2017b), Recurrent Neural Networks and 

Reinforcement Learning (Jaques et al. 2017; Segler et al. 

2017; Olivecrona et al. 2017) are examples of this 

approach, which are eventually combined with Sequential 

Gen (Guimaraes et al. 2017; Benjamin et al. 2017). 

However, much of this research is still in the 

exploratory stage, with produced samples being evaluated 

solely visually or using metrics that aren't always relevant 

to the real drug development process. A thorough 

examination of the produced samples' internal chemical 

diversity would be very beneficial. Because drug 

candidates might fail in a variety of unanticipated ways 

later in the drug development pipeline, it's critical to 

generate a chemically varied stream of molecules. (Jaques 

et al. 2017, p. 8) claims that their Reinforcement Learning 

(RL) generative model produces simple molecules based 

on visual inspection. (Guimaraes et al. 2017, p.6, p.8), on 

the other hand, claims that their Objective-Reinforced 

Generative Adversarial Network (ORGAN) produces fewer 

repetitive and simple examples than reinforcement 

learning. 

 

3. THEORY 
 

Despite the availability of effective medicines and 

therapies in the pharmaceutical supply chain, new 

medications are desperately needed, particularly during 

the COVID-19 epidemic. Because the drug development 

life cycle is extensive and complex, requiring 10 to 15 

years to generate a product, it is challenging to create and 

deliver treatments fast. 

 

The drug development process is equally unclear and 

confronts its own set of obstacles, including difficulties 

identifying targets, a shrinking market for medication 

approval, and rising prices. Pharmaceutical firms join 

forces to break down the drug development life cycle and 

seek ways to speed things up while still producing safe 

and effective pharmaceuticals. 

 

According to the FDA, the medication development 

process has five phases. 

 
Figure 2: Drug Discovery Cycle 
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The discovery and development process is the initial 

phase. Researchers investigate fresh insights into a 

disease process in this stage, which allows them to build a 

solution to counteract the disease's symptoms. They then 

put molecular compounds to the test to see whether they 

have any anti-disease properties. Preclinical research, 

which includes in vitro and in vivo studies, is the second 

phase in the drug development process. Clinical research 

is the third phase. This is a term that relates to human 

research or trials. Researchers choose who is eligible to 

participate, how many individuals will be included in the 

study, and how long it will run. 

 

The FDA medication review is the process's fourth 

phase. A pharmaceutical business must first file a New 

Medicine Application, which is then reviewed by the FDA, 

which either approves or rejects the drug. Finally, an FDA 

advisory council weighs in with their thoughts. FDA post-

market medication safety monitoring is the final phase in 

the medication development process. This is where the 

FDA evaluates reports of medication difficulties and 

decides whether to add cautions to dose advice, as well as 

further steps in the case of more significant difficulties. 

 

The whole process from the discovery to the clinical 

trials takes around 12 years. This process can be too long 

and tedious. This paper compares various generative 

models to automate the very first step of the Drug 

Discovery Process. A generative model is a type of 

statistical model that is capable of producing new data 

instances. This model is commonly used to estimate 

probabilities, model data points, and differentiate between 

classes using these probabilities. Generic models may 

handle more complicated tasks than discriminative 

models since they generally depend on Bayes theorem. 

Unsupervised machine learning uses descriptive 

modelling to characterize phenomena in data, allowing 

computers to grasp the actual world. 

 

 
Figure 3: Generative Models Working 

 

A generative model takes into account the data's 

distribution and informs you how likely a specific 

occurrence is. Because they can assign a probability to a 

succession of words, models that predict the next word in 

a series are often generative models. A discriminative 

model avoids the question of whether or not a particular 

event is likely, instead focusing on the likelihood of a label 

being applied to it.  

In this paper, we explore Generative Models to generate 

Smiles structures. SMILES (Simplified Molecular Input 

Line Entry System) is a line format for inputting and 

expressing molecules and reactions (a typographical 

technique utilizing printable characters). SMILES includes 

the same information as a connection table with more 

connections.  

 

The fact that SMILES is a verbal construct rather than a 

computer data structure makes it more helpful than a 

connection table. SMILES is a genuine language with just a 

few grammatical rules and a limited vocabulary (atom and 

bond symbols). 

 

 
Figure 4: SMILES Representation 

 

4. METHEDOLOGY 
 
Various different methods were used for the generation of 
the SMILES Strings. The Aim being finding the method that 
gives the best and most accurate strings. 

4.1 Long Short-Term Memory 

The long short-term memory network (LSTM) is a 

recurrent neural network that can learn the order 

dependence of sequence prediction problems. This is a 

necessary behavior in complex problem areas such as 

machine translation and speech recognition.  LSTM is a 

complex field of deep learning. It may be difficult to 

understand what LSTMs are and how they relate to 

domain terms such as bidirectional and sequence-to-

sequence. 

 

The goal is to teach the model to recognize patterns in 

SMILES strings so that the output matches genuine 

molecules. LSTMs are the ideal network for producing new 

SMILES strings since we give the network text as data. We 
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have trained the RNN with two LSTM layers on a dataset 

of 100,000 SMILES strings. SMILES strings are made up of 

two sorts of characters: special characters like "/" or "=," 

and elemental symbols like "P," "Si," "Mg," and so on. We 

create a separate dictionary for each of the specified 

unique characters.  Following the creation of our character 

mapping dictionaries, we normalized and translated every 

character in the SMILES string dataset into numbers. The 

input array X was then reshaped into a 3-dimensional 

array for [samples, time steps, physicochemical 

characteristics] using NumPy, which is the required input 

form for recurrent models. After training the model, the 

predicted output Y is one-hot encoded to produce new 

SMILES. When using integer representations like the ones 

we just generated, one-hot encoding removes the integer 

encoded value and replaces it with a new binary variable 

for each distinct integer value. 

 

Because there might be delays of undetermined 

duration between critical occurrences in a time series, 

LSTM networks are well-suited to categorizing, 

processing, and generating predictions based on time 

series data. LSTMs were created to solve the problem of 

vanishing gradients that can occur while training standard 

RNNs. In many cases, LSTM has an advantage over RNNs, 

hidden 

 

 
Figure 5: LSTM Architecture 

 

Markov models, and other sequence learning 

approaches due to its relative insensitivity to gap length. A 

cell, an input gate, an output gate, and a forget gate make 

up a typical LSTM unit. The three gates control the flow of 

information into and out of the cell, and the cell 

remembers values across arbitrary time periods. 

 

The final step of the approach was training of the model 

for which we used 10 epochs of 512 batch size which gave 

the optimal results. However, results giving better 

accuracy and more valid molecules were expected. Thus, 

other better approaches were explored. 

4.2 Auto - Encoder 

An Autoencoder is a neural network in which the 

output layer and the input layer have the same 

dimensions. Simply put, the number of output units in the 

output layer equals the number of input units in the input 

layer. Automatic encoders copy data from input to output 

without supervision, which is why they are sometimes 

called replicated neural networks. 

 

 
Figure 6: Auto- Encoder Architecture 

 

Three major components of an auto-encoder are: 

1. Encoder: The encoder is a connected feedforward 

neural network that shrinks the input picture into a 

dimensionality-reduced compressed 

representation and translates it into a latent 

dimensional space. The deformed representation of 

the actual picture is the compressed image. 

2. Bottle-neck: This section of the network includes a 

reduced version of the decoder's input.  

3. Decoder: The decoder and encoder are both 

forward networks with a topology identical to the 

encoder. The network is in charge of reassembling 

the input into the code's original size. 

 

The input provided to the Encoder is a Correct/verified 

SMILE vector. And the output obtained from this encoder 

is a random size smaller vector. This Vector is also called 

latent space representation. Whereas the input taken by 

the decoder is the latent vector and the final output that is 

obtained from the decoder is a verified representation of a 

SMILE string. 

4.3 Generative Adversarial Network 

GANs, or generative adversarial networks, are a type of 

artificial intelligence. Networks is a deep learning-based 

method to generative modelling. It is an unsupervised 

learning job in machine learning that is used for automatic 
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drug discovery and then learning the regularities and 

patterns in the input data so that the model may produce 

or output fresh verified grin strings. 

 

GANS is a simple approach to train a new dataset of 

validated medicines by framing the dataset as a problem 

with two sub-models: one is the Generator model, which 

we have trained to produce validated drug modules, and 

the other is the Modeler model, which we have trained to 

generate validated drug modules. In a contradictory, zero-

sum game, the two models are trained simultaneously 

until the discriminator model is tricked roughly half of the 

time, indicating that the generator model is providing 

plausible instances. 

 

The architecture of how GANs combine actual and 

synthetic data to create the desired outputs is depicted in 

the diagram below. 

 

 
Figure 7: GANs Architecture 

 

A unique computational approach for designing 

pharmacological compounds with the required 

characteristics has been implemented. Deep learning and 

reinforcement learning methods are used in the model. 

The model combines reinforcement learning with two 

distinct deep neural networks: a generator and a 

discriminator. These two algorithms are trained 

independently but combined to create unique targeted 

chemical libraries. Our model employs a simple molecular 

input line entry mechanism to represent molecules as 

strings (SMILES). 
 

The generative model is employed in this system to 

produce new chemically viable compounds, acting as an 

agent, while the discriminative model (predicting the 

characteristics of the new compound) is also important, 

and the agent's behavior is evaluated to assign a number 

to each formed molecule. The generative model is trained 

to maximize the predicted reward, which is a function of 

the numerical characteristics provided by the predictive 

model. The generative model and discriminator model are 

trained using supervised learning techniques in the first 

step of the process. 

The second step uses the RL method to train both 

models together to bias the creation of new chemical 

structures toward those with the required physical and/or 

biological characteristics. In a nutshell, we employed the 

GAN model combined with RL to create chemical 

compounds with certain physical qualities like stability, 

originality, and synthesizability. 

 

5. VALIDATION 

After the generation of the smiles strings by various 

models, the next step included the Validation.  There is no 

guarantee that the resulting Smiles strings will be valid 

and represents a reasonable molecular structure.  

 
To make a SMILES string, we convert a SMILES string 

into an alternate syntax that keeps the atom order but 

changes the parenthesis and ring closure symbols. SMILES 

are not chemically interpreted during the transformation 

process; instead, the syntax is string processed. As a result, 

it makes assumptions about the shape of the SMILES 

string that may or may not be satisfied if the SMILES string 

was created using a typical cheminformatics toolkit. The 

algorithm, for example, assumes that the SMILES were 

constructed by traversing the chemical network in depth 

first. The SMILES string CC(C1)CCCC1 cannot be encoded, 

for example, since this assumption is not satisfied. 

 
We substitute the two ring closure symbols in a 

combination with a singular one at the latter symbol's 

location when using SMILES to alter ring closure symbols. 

Why not just replace the first symbol with something else? 

The reason for this is due to the tree structure of a SMILES 

string; there is only one path from the root to each node in 

the tree, but the path may split numerous times after that. 

While the atom that occurred five bonds earlier (along the 

path leading to this atom) can be referred to, the atom that 

appears five bonds later may have several possibilities. 

 

Validity is basically checking the molecule for Syntactic 

and Semantic Errors. For this, the library Rdkit has been 

used. After passing the smiles string via the model, we get 

the structure of the Smile generated. If it is not a valid 

molecule, we will get an error. 
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6. SIMULATION 
 

Docking is a method in molecular modelling that 

predicts the preferred orientation of one molecule to 

another when they are linked together to create a stable 

complex. Using scoring functions, for example, knowledge 

of the preferred orientation may be used to predict the 

strength of connection or binding affinity between two 

molecules. In signal transduction, the interactions 

between physiologically relevant molecules such as 

proteins, peptides, nucleic acids, and lipids are crucial. 

Furthermore, the sort of signal produced may be 

influenced by the relative direction of the two interacting 

partners. As a result, docking is beneficial for forecasting 

the signal's intensity and kind. 

 

Due to its capacity to anticipate the binding-

conformation of small molecule ligands to the proper 

target binding site, molecular docking is one of the most 

often utilized strategies in structure-based drug design. 

The initial condition for performing a docking screen is the 

structure of the protein of interest. The structure is usually 

determined using a biophysical approach like x-ray 

crystallography, NMR spectroscopy, or cryo-EM, although 

it can also come through homology modelling. A docking 

tool uses this protein structure and a database of possible 

ligands as inputs. A docking program's success is 

determined by two factors: the search algorithm and the 

scoring mechanism. 

 

 
Figure 8: Molecular Docking Flowchart 

 
In theory, the search space is made up of all potential 

protein and ligand orientations and conformations. 

However, with current computational resources, 

exhaustively exploring the search space—which would 

entail enumerating all possible molecule distortions as 

well as all possible rotational and translational 

orientations of the ligand relative to the protein at a given 

level of granularity—is impossible. Most docking systems 

take into consideration the ligand's whole conformational 

space, and a few even try to represent a flexible protein 

receptor. 

 
The ligand and the receptor have been subjected to a 

range of conformational search techniques. These are 

some of them: 

1. Torsion searches on rotatable bonds might be 

systematic or stochastic. 

2. Simulations of molecular dynamics. 

3. Genetic algorithms are used to "evolve" new low-

energy conformations, with the fitness function 

used to choose individuals for the next iteration 

being the score of each position. 

 
Docking algorithms yield a vast number of possible 

ligand poses, some of which can be eliminated right away 

owing to protein conflicts. The remaining ligands are 

ranked using a scoring system that takes a posture as 

input and outputs a number indicating the chance that the 

posture reflects a good binding interaction. The majority 

of scoring functions are molecular mechanics force fields 

based on physics that estimate the energy of a posture 

within the binding site. An additive equation may be built 

to represent the various contributions to binding: 

 

 
Figure 9: Binding Equation 

 
Solvent effects, conformational changes in the protein 

and ligand, free energy owing to protein-ligand 

interactions, internal rotations, ligand and receptor 

association energy to create a single complex, and free 

energy owing to changes in vibrational modes are among 

the components. A stable system with a low (negative) 

energy suggests a potential binding contact. Alternative 

techniques include limitations based on known critical 

protein-ligand interactions or knowledge-based potentials 

generated from interactions found in vast databases of 

protein-ligand structures into modified scoring systems. In 

the Docking Process we predict the binding affinity 

between ligand and protein and the structure of protein 

ligand complex. The use of OpenBabel software was made 

that converts our Smile format into a pdb format which 

will be used further. The file downloaded from here is 

loaded on PyRx software for simulation.  

 

The main protein taken as a sample is SARS 2 Covid 19 

strand. After running the simulation, docking is achieved 

where the ligand tries various positions it can attach with 
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the virus. The binding affinity for various positions are 

tested thus to give the best interlocking location. The best 

locations are displayed as a result in a sequential manner 

and the most optimum location can thus be found. 

 

 
Figure 10: PyRx Software 

 

We use PyMol software can be used for further 

visualization and clear understanding of the process.  All 

the possible docking locations, the molecule can attach 

with are displayed here. 

 

 
Figure 11: Simulation using PyMol 

 
In this manner, various molecules can be tested for 

their affinities with the main drug and the whole drug 

generation process can be automated to a certain extent 

thus reducing the time significantly. 

 

7. CONCLUSIONS 
 

 To summarize, in this paper we have suggested an 

alternate approach to the creation of new medicines. We 

have tried to generate new drugs with the help of a huge 

‘SMILES’ database and different generative models like 

LSTMs, GANs and Auto-Encoders. All the generated drugs 

were validated for a feasible chemical formula and 

structure. Finally, the valid drugs were simulated on 

PyMol and PyRx to check if they can be docked well on the 

target compounds.   
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