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Abstract – DeepMind published the first version of the 
Deep Q-Network (DQN) in 2013 which was an algorithm 
capable of human-level performance on a number of classic 
Atari 2600 games. DQN, and other similar algorithms like 
AlphaGO and TRPO, fall under the category of 
Reinforcement Learning (RL), which is a subset of machine 
learning. In years since, much advancement has been made 
in the field which enabled algorithms to increase their 
performance and solve games faster than ever before. I have 
been working to implement these advancements in Keras. In 
this paper I’ll be implementing and sharing results of how 
the advancements like DQN, Double Q-Learning and Dueling 
architecture algorithms work in learning and mastering the 
Atari 2600 game, Ms. Pac-man.  
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I. INTRODUCTION 

Reinforcement Learning is a subset of machine learning in 
which an agent exists within an environment and looks to 
maximize a reward which is defined by the programmer. It 
proceeds to take actions, which change the environment 
and feeds it the rewards that are associated with those 
specific changes. The agent, then, continues to analyze its 
new state and settles on its next actions, repeating the 
process endless or until the environment terminates. This 
decision-making loop is known as Markov decision process 
(MDP). 

Because of the simplicity of the controls, actions and 
objectives of Atari 2600 games like Ms. Pac-man fit into the 
MDP framework compared to later titles of consoles like 
NES and SNES.  A player observes the position of Ms. Pac-
Man on the game screen and presses buttons on the 
controller to save it from the ghosts and make it consume 
as many pellets as it can. The process of making instant 
decisions based on one of the nearly infinite pixel 
combinations that show up on the screen at any given 
time, and one which one had very unlikely to have ever 
encountered before can be simple for human beings but is 
daunting for the machine learning agent. To make matters 
more complex, video games are technically partially 

observable MDPs, in the sense that we are forced to make 
choices based on an indirect representation of the game 
which is on a screen instead of getting the output from the 
code or memory itself, which might hide some of the 
information we need to make a fully-informed decision.  

 

Fig 1: Ms. Pac-man game on the Atari 2600 console 

Games like Ms. Pac-man are very simple to control using 
the controllers. The finite number of buttons and joystick 
positions help us map the observation space to a discrete 
and manageable action space, hence making them an ideal 
candidate to practice enforcing reinforcement learning 
techniques at a lower processing cost. 

II. PREPROCESSING FRAMES 

The preprocessing network contains 3 convolutional 
layers. Their sizes are 32*8*8, 64*4*4, 64*3*3 with strides 
4, 2 and 1 respectively. They all have ReLU activations. 
Then there is a dense layer with 512 neurons
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Fig 2: Preprocessing Network Model 

and then the output layer with number of neurons being 
number of actions. While the shape of input image of the 
preprocessing network is 84*84 and the image has all 3 
colors, the image from output layer is a heavily down 
sampled image with only white and black colors. 

 

Fig 3: Processed Image from Pre-processing Model 

DQN MODEL 

In this paper, the objective is to train the Ms. Pac-man 
agent to learn playing the game by avoiding the ghosts and 
eating the food and scared ghosts as much as possible (i.e., 
to get higher scores) 

The convolutional layers of the DQN will learn to detect the 
increasingly abstract features of the game’s input screen. 
The dense classifier will then map the set of those features 
present in the current network iteration to the output 
layer containing a node for every controller combination. 

 

After passing through the network the pixel images are 
mapped to Q values, which makes the neural network a Q 
function approximator making it able to predict the future 
states with enough training. Gradient descent is used in 
training which uses the above loss function, which in itself 
is a temporal difference alteration.  

Essentially, this is the difference between the target Q 
values and the current estimation of them where the target 
value is the sum of immediate reward and Q value of the 
next state. Since the network has access to the first reward 
term, the accuracy of the overall expression is increased.   

The DQN takes two measures to stabilize the constantly 
shifting dataset created during exploration. First, it 
duplicates the neural network, using the target network to 
generate the target values while the online network 
continues to generate the estimations. Only the online 
network is trained and the weights are updated at the 
target network. Second, an experience buffer is used. It a 
dataset where the past experiences of the agent are stored 
in the form of (s, a, r, t, s’) where t is a Boolean that lets the 
agent know if that was the terminal state of the episode, 
and s’ represents the state that followed s when the agent 
took action a.  

The experience entry contains all of the variables needed 
to compute the loss function. So, instead of learning the 
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game during playtime, it’s just moving the Pac-man agent 
around the screen based on what it learned before, but 
appending all of those experiences into the buffer. Then, 
the experiences are taken from storage and replayed to the 
agent so that it can update its parameters for state 
prediction accuracy. This ensures that the agent is learning 
from its entire history (or at least as much as the data 
capacity before it starts overwriting the oldest data), 
rather than only from its most recent trajectory. 

Achieving balance between exploration and exploitation is 
very delicate task. Instead of taking only one pathway with 
the highest reward each time the agent also needs to 
explore new pathways in order to find more efficient ways 
to solve the problem. It also needs to be careful to not 
explore every pathway possible as there can be millions 
and billions of permutations possible depending on the 
complexity of the problem. A game like Ms. Pac-man can be 
complicated as there are up to four decisions possible for 
every pixel position present on the screen.  The original 
DQN solves this by taking the Epsilon-greedy approach. 
This is done by initializing a variable, epsilon, to 1.0. For 
every step, a random number between 0 and 1 is 
generated. If this number is less than epsilon, an action is 
taken completely at random, regardless of what the agent 
calculates about that action’s Q value. Initially, because the 
value of epsilon is 1, this is repeated 100% of the time. 
During training, the epsilon is decreased down to around 
0.1, which basically means that the agent takes the action 
that was determined to be best 90% of the time and 
explores a new, random direction the other 10%.  

In practice, the epsilon value is never let to 0. During 
testing/evaluation the value is kept as 0.05. This ensures 
that the agent can never get stuck in a corner or stop 
moving indefinitely.  

I chose to run these comparison experiments for 10 
million frames. 

III. DOUBLE DQN AND DUELING ARCHITECTURE 

In 2015, van Hasselt et al. applied double q-learning to 
DQN, which had resulted in performance improvement in 
some games. In the loss function from above - the target 
network is used to both compute the q values for every 
action in the next state and to determine which of those 
actions the agent would want to take (i.e., the highest one). 
As it turns out, this can lead to some overestimation issues, 
sometimes particularly when there is an inconsistency 
between the target network and online network causing 
them to recommend different actions given the same state 
(instead of same action with slightly different q values). To 
solve this, it is proposed that the target network’s 
responsibility to determine the best action is taken away. 

It would simply generate the Q values, and online model 
then can decide which to use. The Double DQN generates 
target values according to: 

 

In RL theory the Q function can be split up to the sum of 
two independent terms: the value function V(s), which 
represents the value of the current state, and an advantage 
function A (s, a), which represents the relative importance 
of each action, and ensures that the agent takes the best 
feasible action, even if that choice may not have any 
immediately reflect on the game score. 

In 2016, Wang et al. published the dueling network 
architecture, which works by splitting the neural network 
into two while sharing a convolutional base, one for 
estimating each function. 

 

Fig 4: DQN architecture (top) vs. Dueling DQN (bottom). 
This computes the action and value functions separately, 

and then adds them up to arrive at the Q function. 

The green arrows in the architecture schematic above are 
a generalization for the method used to combine them. To 
achieve that, we use the following approach: 

 

Where alpha and beta are the parameters of the advantage 
streams and value streams. The network can use the 
understanding of its chosen action to change the 
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advantage function to 0, so that Q (s, a) is almost equal to 
V(s). 

Schaul et al.’s 2016 paper proposed a solution, known as 
Prioritized Experience Replay (PER). In PER, an additional 
data structure is used that keeps a record of the priority of 
each transition. This means that the experiences are now 
sampled in proportion to their priorities: 

 

These priority weights are controlled by a hyper 
parameter beta, which controls how vigorously they need 
to be compensated. The beta value is typically incremented 
throughout the duration of the run, rising from an initial 
value of approximately 0.6 and ending at 1.0 (full 
compensation). Agents using PER usually have lower 
learning rates (typically around .25x) to prevent against 
catastrophic collapse. 

 

IV. BENCHMARKS 

Training Ms. Pac-man agent with DQN 

We analyze the agent’s success by charting its cumulative 
reward at the end of every episode. 

The reward function is proportional to and always less 
than the in-game score, therefore, not meaning much on its 
own. However, the agent had still learned something about 
the game since it consistently improved over time. Also, 
there is a diminishing return on investment. 

 

Fig 5: Episode cumulative reward against each episode 
using DQN 

The agent had learned to navigate around the maze. It 
succeeds in clearing large areas when there are still dense 
pockets to be collected. However, the agent had a hard 
time going back to single dots that it had missed and it 
seems to get stuck whenever it finds itself in the middle of 
two pockets and has to decide which one to go after first. 

 

Fig 6: Pac-man agent does not find its way back to lonely 
dots and gets stuck in the middle unable to determine 

which way to go 

Training Pac-man with Prioritized Double Dueling 
 
Since the three algorithms are independent of each other, 
they can exist in the same algorithm. This can be referred 
to as a Prioritized Double Dueling DQN (PDD). Here is the 
learning curve, plotted against the previous version: 
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Fig 7: Comparison of DQN with Prioritized Double Dueling 
DQN 

 

 
Fig 8: Pac-man agent successfully finds its way to the 

lonely dots and does not get stuck 
 

While their performance is as poor as DQN during the first 
few thousand episodes, PDD begins to break away at the 
2000th episode mark. And while that gap may seem small, 
analyzing the gameplay gives interesting results. 

The new additions had allowed the agent to seek out 
isolated dashes successfully. In addition. it had also made 
the association between finding out the energy pills within 
the corners and earning a higher reward, possibly from 
accidentally running into ghosts once that behavior makes 
them vulnerable.  
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