
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1424

Playing Pac-Man using Reinforcement Learning

K Vijaychandra Reddy1

1UG student, Dept. Of CSE, Mahatma Gandhi Institute of Technology, Telangana, India.
--***---
Abstract – DeepMind published the first version of the
Deep Q-Network (DQN) in 2013 which was an algorithm
capable of human-level performance on a number of classic
Atari 2600 games. DQN, and other similar algorithms like
AlphaGO and TRPO, fall under the category of
Reinforcement Learning (RL), which is a subset of machine
learning. In years since, much advancement has been made
in the field which enabled algorithms to increase their
performance and solve games faster than ever before. I have
been working to implement these advancements in Keras. In
this paper I’ll be implementing and sharing results of how
the advancements like DQN, Double Q-Learning and Dueling
architecture algorithms work in learning and mastering the
Atari 2600 game, Ms. Pac-man.

Keywords-Convolution, Deep Q-Networks, Convolutional
Neural Networks, Reinforcement Learning, Tensorflow,
Keras

I. INTRODUCTION

Reinforcement Learning is a subset of machine learning in
which an agent exists within an environment and looks to
maximize a reward which is defined by the programmer. It
proceeds to take actions, which change the environment
and feeds it the rewards that are associated with those
specific changes. The agent, then, continues to analyze its
new state and settles on its next actions, repeating the
process endless or until the environment terminates. This
decision-making loop is known as Markov decision process
(MDP).

Because of the simplicity of the controls, actions and
objectives of Atari 2600 games like Ms. Pac-man fit into the
MDP framework compared to later titles of consoles like
NES and SNES. A player observes the position of Ms. Pac-
Man on the game screen and presses buttons on the
controller to save it from the ghosts and make it consume
as many pellets as it can. The process of making instant
decisions based on one of the nearly infinite pixel
combinations that show up on the screen at any given
time, and one which one had very unlikely to have ever
encountered before can be simple for human beings but is
daunting for the machine learning agent. To make matters
more complex, video games are technically partially

observable MDPs, in the sense that we are forced to make
choices based on an indirect representation of the game
which is on a screen instead of getting the output from the
code or memory itself, which might hide some of the
information we need to make a fully-informed decision.

Fig 1: Ms. Pac-man game on the Atari 2600 console

Games like Ms. Pac-man are very simple to control using
the controllers. The finite number of buttons and joystick
positions help us map the observation space to a discrete
and manageable action space, hence making them an ideal
candidate to practice enforcing reinforcement learning
techniques at a lower processing cost.

II. PREPROCESSING FRAMES

The preprocessing network contains 3 convolutional
layers. Their sizes are 32*8*8, 64*4*4, 64*3*3 with strides
4, 2 and 1 respectively. They all have ReLU activations.
Then there is a dense layer with 512 neurons

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1425

Fig 2: Preprocessing Network Model

and then the output layer with number of neurons being
number of actions. While the shape of input image of the
preprocessing network is 84*84 and the image has all 3
colors, the image from output layer is a heavily down
sampled image with only white and black colors.

Fig 3: Processed Image from Pre-processing Model

DQN MODEL

In this paper, the objective is to train the Ms. Pac-man
agent to learn playing the game by avoiding the ghosts and
eating the food and scared ghosts as much as possible (i.e.,
to get higher scores)

The convolutional layers of the DQN will learn to detect the
increasingly abstract features of the game’s input screen.
The dense classifier will then map the set of those features
present in the current network iteration to the output
layer containing a node for every controller combination.

After passing through the network the pixel images are
mapped to Q values, which makes the neural network a Q
function approximator making it able to predict the future
states with enough training. Gradient descent is used in
training which uses the above loss function, which in itself
is a temporal difference alteration.

Essentially, this is the difference between the target Q
values and the current estimation of them where the target
value is the sum of immediate reward and Q value of the
next state. Since the network has access to the first reward
term, the accuracy of the overall expression is increased.

The DQN takes two measures to stabilize the constantly
shifting dataset created during exploration. First, it
duplicates the neural network, using the target network to
generate the target values while the online network
continues to generate the estimations. Only the online
network is trained and the weights are updated at the
target network. Second, an experience buffer is used. It a
dataset where the past experiences of the agent are stored
in the form of (s, a, r, t, s’) where t is a Boolean that lets the
agent know if that was the terminal state of the episode,
and s’ represents the state that followed s when the agent
took action a.

The experience entry contains all of the variables needed
to compute the loss function. So, instead of learning the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1426

game during playtime, it’s just moving the Pac-man agent
around the screen based on what it learned before, but
appending all of those experiences into the buffer. Then,
the experiences are taken from storage and replayed to the
agent so that it can update its parameters for state
prediction accuracy. This ensures that the agent is learning
from its entire history (or at least as much as the data
capacity before it starts overwriting the oldest data),
rather than only from its most recent trajectory.

Achieving balance between exploration and exploitation is
very delicate task. Instead of taking only one pathway with
the highest reward each time the agent also needs to
explore new pathways in order to find more efficient ways
to solve the problem. It also needs to be careful to not
explore every pathway possible as there can be millions
and billions of permutations possible depending on the
complexity of the problem. A game like Ms. Pac-man can be
complicated as there are up to four decisions possible for
every pixel position present on the screen. The original
DQN solves this by taking the Epsilon-greedy approach.
This is done by initializing a variable, epsilon, to 1.0. For
every step, a random number between 0 and 1 is
generated. If this number is less than epsilon, an action is
taken completely at random, regardless of what the agent
calculates about that action’s Q value. Initially, because the
value of epsilon is 1, this is repeated 100% of the time.
During training, the epsilon is decreased down to around
0.1, which basically means that the agent takes the action
that was determined to be best 90% of the time and
explores a new, random direction the other 10%.

In practice, the epsilon value is never let to 0. During
testing/evaluation the value is kept as 0.05. This ensures
that the agent can never get stuck in a corner or stop
moving indefinitely.

I chose to run these comparison experiments for 10
million frames.

III. DOUBLE DQN AND DUELING ARCHITECTURE

In 2015, van Hasselt et al. applied double q-learning to
DQN, which had resulted in performance improvement in
some games. In the loss function from above - the target
network is used to both compute the q values for every
action in the next state and to determine which of those
actions the agent would want to take (i.e., the highest one).
As it turns out, this can lead to some overestimation issues,
sometimes particularly when there is an inconsistency
between the target network and online network causing
them to recommend different actions given the same state
(instead of same action with slightly different q values). To
solve this, it is proposed that the target network’s
responsibility to determine the best action is taken away.

It would simply generate the Q values, and online model
then can decide which to use. The Double DQN generates
target values according to:

In RL theory the Q function can be split up to the sum of
two independent terms: the value function V(s), which
represents the value of the current state, and an advantage
function A (s, a), which represents the relative importance
of each action, and ensures that the agent takes the best
feasible action, even if that choice may not have any
immediately reflect on the game score.

In 2016, Wang et al. published the dueling network
architecture, which works by splitting the neural network
into two while sharing a convolutional base, one for
estimating each function.

Fig 4: DQN architecture (top) vs. Dueling DQN (bottom).
This computes the action and value functions separately,

and then adds them up to arrive at the Q function.

The green arrows in the architecture schematic above are
a generalization for the method used to combine them. To
achieve that, we use the following approach:

Where alpha and beta are the parameters of the advantage
streams and value streams. The network can use the
understanding of its chosen action to change the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1427

advantage function to 0, so that Q (s, a) is almost equal to
V(s).

Schaul et al.’s 2016 paper proposed a solution, known as
Prioritized Experience Replay (PER). In PER, an additional
data structure is used that keeps a record of the priority of
each transition. This means that the experiences are now
sampled in proportion to their priorities:

These priority weights are controlled by a hyper
parameter beta, which controls how vigorously they need
to be compensated. The beta value is typically incremented
throughout the duration of the run, rising from an initial
value of approximately 0.6 and ending at 1.0 (full
compensation). Agents using PER usually have lower
learning rates (typically around .25x) to prevent against
catastrophic collapse.

IV. BENCHMARKS

Training Ms. Pac-man agent with DQN

We analyze the agent’s success by charting its cumulative
reward at the end of every episode.

The reward function is proportional to and always less
than the in-game score, therefore, not meaning much on its
own. However, the agent had still learned something about
the game since it consistently improved over time. Also,
there is a diminishing return on investment.

Fig 5: Episode cumulative reward against each episode
using DQN

The agent had learned to navigate around the maze. It
succeeds in clearing large areas when there are still dense
pockets to be collected. However, the agent had a hard
time going back to single dots that it had missed and it
seems to get stuck whenever it finds itself in the middle of
two pockets and has to decide which one to go after first.

Fig 6: Pac-man agent does not find its way back to lonely
dots and gets stuck in the middle unable to determine

which way to go

Training Pac-man with Prioritized Double Dueling

Since the three algorithms are independent of each other,
they can exist in the same algorithm. This can be referred
to as a Prioritized Double Dueling DQN (PDD). Here is the
learning curve, plotted against the previous version:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1428

Fig 7: Comparison of DQN with Prioritized Double Dueling
DQN

Fig 8: Pac-man agent successfully finds its way to the

lonely dots and does not get stuck

While their performance is as poor as DQN during the first
few thousand episodes, PDD begins to break away at the
2000th episode mark. And while that gap may seem small,
analyzing the gameplay gives interesting results.

The new additions had allowed the agent to seek out
isolated dashes successfully. In addition. it had also made
the association between finding out the energy pills within
the corners and earning a higher reward, possibly from
accidentally running into ghosts once that behavior makes
them vulnerable.

V. REFERENCES

[1] Volodymyr Mnih et al., “Playing Atari with Deep
Reinforcement Learning”, Neural Information
Processing Systems, 2013

[2] Volodymyr Mnih et al., “Human-level control through

deep reinforcement learning”, 2015

[3] Hado van Hasselt et al., “Deep Reinforcement Learning
with Double Q-learning”, Association for the
Advancement of Artificial Intelligence, 2015

[4] Ziyu Wang et al., “Dueling Network Architectures for
Deep Reinforcement Learning”, 2016

[5] Tom Schaul et al., “Prioritized Experience Replay”,
2016

[6] https://github.com/keras-rl/keras-rl

